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SECTION 1: EXPONENTIAL FUNCTIONS

1-1 Exponential Functions of the Form y = r t

In the Biomedical Mathematics course you have seen many examples of the use

of functions. Both linear functions and quadratic functions were discussed in de-

tail. In this unit you will work with the most important type of function that

appears in biomedical settings, the exponential function. From an applied point of

view, we will find that exponential functions will describe many different kinds of

events: for example, the spread of diseases, the metabolism of a drug in the blood-

stream and the decay of radioactive substances.

The growth of a bacteria culture provides a simple example of an exponential

function. Suppose that we begin with a single bacteria cell, which at the end of

one day splits into two cells. When another day has passed, both these cells split,

and the process continues as long as sufficient food is available. A table can be

propared which shows the number of cells as a function of days passed.

t (days) (number of cells)

0 1

1 2

2 4

3 8

4 16

5 32

6 64

The numbers that appear in the y column are just the integral' powers of 2. That is,

1 = 20, 2 = 2 1
, 4 = 2 2

, 8 = 2 3 and so on. In fact at the end of t days there are

2
t bacteria cells. The function displayed in the table can be described by the

equation
Y 2t

The reason for the term exponential function can be seen in this equation. One of

the variables appears as an exponent.

1-2 Exponential Functions of the Form y = Art

In the example just discussed the exponential function had a formula of the

form y = rt with r = 2. A slightly more complicated formula is the following, that

describes the growth of a bacteria culture with a starting population of 100 cells.

The population triples in size each day.

y = 100(3t)

This formula is of the form

y = Art

1



with A = 100 and r = 3. The number A is called the scaling constant and the number

r is called the base or the common ratio.

A table of values for the function is shown below.

t (days) y (number of cells)

0 100

1 300

2 900

3 2700

4 8100

5 24300

A graph displaying these data is shown below. Notice that the points have been

joined by a smooth curve. Actually this misrepresents the situation because only

integral y-values are possible. A fractional part of a bacteria cell makes no

sense. This must be kept in mind while interpreting the graph.
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EXAMPLE:

Determine the number of bacteria present at the end of 3.7 days.

O
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SOLUTION:

The graph can be used to make a rough estimate. It appears that y will be

about 6000.

In order to calculate the number we return to the formula y = 100 (3t). Since

t = 3.7 we must determine 100(33.7 ). The value of 3 3.7 can be found east];' by using

the logarithm table inside the back cover of this book. The calculations follow.

log 33'7 = 3.7 log 3

3.7 (.477)

= 1.765

From the log table we find that 101.765 = 58. Therefore

33'7 = 58

Finally y = 100 (33.7 )

= 100(58)

= 5800 bacteria cells.

EXAMPLE:

For what value of t will the population be 1,000,000?

SOLUTION:

The problem is to find t such that

100 (3
t

) = 1,000,000

or, equivalently 3t = 10,000

Taking logarithms of both :Ades we obtain

log 3t = log 10,000

log 3t = 4

t log 3 = 4

Therefore

t
4

t 47477

= 8.4 days.

1-3 Growth Rates of Exponential Functions

Upon inspecting the graph of Section 1-2 it is evident t the function is

not growing at a constant rate. As the value of t increases, _ne growth is more

rapid (the slope is steeper). This is to be expected since a larger cell population

means that more new cells will be produced. The rate of increase in the number of

cells depends on how many cells are already present. This is an important property

of all exponential functions. We can learn more by looking at a couple of specific
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examples. Below are tables of values for the two exponential functions y = 100(3
t

)

and y = 100(5
t) In each case a Ay column has been added to display the step-by-

step growth in the value of y.

y = 100(31) y = 100(5t)

t y

0 100

1 300

2 900

3 2700

4 8100

5 24300

Ay

200

600

1800

5400

16200

t y

0 100

1 500

2 2500

3 12500

4 62500

5 312500

Ay

400

2000

10000

50000

250000

Look at the table on the left. Can you see a relationship between the y-column and

the Ay-column? Each entry in the Ay-column is twice the entry just above it in the

y-column (i.e., 200 = 2.10(`, 600 = 2.300, 1800 = 2.900, etc.). Hence we can write

Ay = 2y

This is simply a statement of proportionality. It says that the growth of y is

directly proportional to y. The proportionality constant is 2.

What about the table on the right? Each entry in the Ay-column is four times

the entry just above it in the y-column (i.e., 400 = 4.100, 2000 = 4.500, etc.).

We can write

y = 4y

This is also a statement of proportionality; only the proportionality constant is
different. In order to see how the proportionality constants arise we write each

growth equation below its exponential function.

y = 100(3t) y = 100(5t)

Ay = 2y Ay = 4y

These examples suggest a relationship, namely that the proportionality constant is

one less than the base of the exponential function. This turns out to be true for
all exponential functions.

The growth equation for the exponential function

y = Art

will be
Ay = (r -1)y.

For an exponential function the rate of growth of y is proportional, to y. This im-

portant property will allow us to "guess" when to use exponential functions in de-

scribing data sets.

4



PROBLEM SET 1:

Problems 1 through 4 are concerned with the function of y = 10 t
.

1. Construct a table displaying the values of the function for integral values of

t from 0 to 6.

2. Add a Ay column to the table and fill in the values.

3. For this function Ay = Ky. K = ?

4. Use the log table at the back of the book to find y when t = 3.6.

The population of a certain bacteria culture is given by the equation

y = 1000(2t)

where t is expressed in hours.

5. What is the base of the exponential function?

6. What is the scaling constant of the exponential function?

7. What is the initial population at time zero?

8. Construct a table displaying the values of the function for integral values of

t from 0 to 5. Include a Ay column in the table.

9. What is the common ratio between successive entries in the y column?

10. The common ratio is the same as the (?) of the exponential function.

11. For this function Ay = Ky, K = ?

12. Draw a graph from the entries in the table and connect the points with a smooth

curve.

13. Use the graph to estimate the bacteria population when t = 3.4 hours.

14. Use the log table at the back of the book to compute the bacteria population

when t = 4.7 hours.

15. Use the log table to compute the time at which the population will reach 20,000.

Write a growth equation Ay = Ky for each of the following exponential functions.

16. y = 3
t

19. y = 862t

17. y = 5
t

20. y = 30(18)t

t
18. y = (7) 21. y = 128(59)t

The table shown opposite shows

the first few values of an exponential

function. When y is 13, Ay is 26. When

y is 39, Ay is 78 and so on.
1

22. What will Ay be when y is 1053? 3

23. What will Ay be when y is 255,879?

y

13

39

117

351

y

26

78

234

5



If a bacteria culture is started with one cell of E. coli and adequate nutrients

are available, the population after t hours will be given by

y = (11.5)t

24. Use the log table at the back of the book to estimate the population at the
end of 5 hours.

*25. If each E. coli cell occupies an area of 1 pmt, compute the area in km 2
covered

by the cell population at the end of 15 hours.

*26. How many hours must pass before the population covers an area equal to the
earth'ssurface? You will need to use the following information.

Diameter d of the earth = 12740 km.

Formula for area of a sphere A = (Id 2

use R =
22

27. Why is it that such a huge bacteria population never devleops in a real
situation?

SECTION 2: GROWTH RATES OF EXPONENTIAL FUNCTIONS

2-1 A Decreasing Exponential Function

In the last section we described a fi'ndamental property of any exponential func-
tion. The rate of growth of the function is proportional to the value of the func-
tion. In equation form this is written as

Ay = Ky

where K is a proportionality constant which depends on the particular function we
are discussing.

We also noted that the proportionality constant K is one less than the base, r,
of the function. Both of the examples of the last section were increasing exponen-
tial fucntions. Now we will look at an example of a decreasing exponential function

and see if our observations still hold true.

Suppose that a population of 1000 organisms is being killed off by predators.

At the end of t days the number, y, of individuals remaining is predicted to be

y = 1000 (.7)t

Here the scaling constant is 1000, the population when t = 0. The base is .7. The
table on the following page shows the results predicted for the first few days. A

Ay column has been included to show step-by-step growth.

6
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Notice that now the values of Ay are

negative because the values of y are

decreasing with the passing of each

day. What is the relationship between

Ay and y for this table? In order to

answer this question we note the follow-

ing pattern.

-300 =

-210 =

-147 =

This indicates that

(-.3)1000

(-.3)700

(-.3)490

Ay = (-.3)y

and hence the proportionality constant is -.3.

Is the proportionality constant one less than the base as in the previous ex-

amples we have considered? Recalling that the base is .7, we find that

.7 - 1 = -.3

Therefore the relationship holds for this function as well. In fact, it holds for

all functions of the form y = Art .

2-2 Finding Equations for Exponential Functions

All the previous exploration of growth rates of exponential functions will be

useful to us as we try to decide when an exponential function is the proper type to

describe a particular set of data. Whenever the growth rate of a function seems to

be proportional to the value of the function, we have good reason to think we are

dealing with an exponential function. Moreover, the relationship between the base

and proportionality constant which we have just discovered is sometimes helpful in

finding the actual equation of the exponential function. The following examples

will illustrate the process.

The growth of a savings account is an example of proportional growth. Banks

pay interest. The amount they pay is proportional to the amount that is in the

savings account. In fact the interest paid is a certain percentage of the amount

of money in the account.

EXAMPLE:

Suppose that an account is started with a $1000 deposit and no other deposits

or withdrawals occur. If the interest rate is 5%, write an equation giving the

value of the account at the end of t years.

SOLUTION:

If the account contains y dollars then the interest at the end of the year will

be (.05)y. Thus the account will grow by an amount Ay given by

Ay = (.05)y

3
7



Remembering that the proportionality constant is one less than the base of the

exponential function, we deduce that the base must be 1.05. Therefore the exponen-

tial function must be of the form

y = A(1.05) t

and we need only find the 7..:aling constant A. To do so, we note that when t = 0

the account contained $1000. Substituting,

1000 = A (1.05)
0

= A1
Therefore A = 1000 and the function is

y = 1000 (1.05)t

EXAMPLE:

The opposite table concerns an

imaginary cell colony which is being

attacked by a disease. Determine

if an exponential function will fit

this table and if so find it.

SOLUTION:

t(min) y(number of living cells)

0 1,000,000

50 900,000

100 810,000

150 729,000

200 656,100

In all our previous tables the time units have been 0, 1, 2, 3, etc. We can

put the above table in a similar form by letting one time unit equal 50 minutes.

A Ay column has also been added.

(50 min) y (number of living cells) Ay

0 1,000,000

1 900,000
-100,000

2 810,000
90,000

3 729,000

4 656,000

81,000

72,900

There are two ways to see that an exponential function will describe the data. One

way is to observe that consecutive pairs of y-values are always in the ratio
900,000 810,000

. .9, etc.). A common ratio of .9 indicates a base of.9 ( 91,000,000 ' 900,000
.9, so the function must be of the form

y = A(.9) t

By the method of the last example, the scaling constant A just turns out to be

1,000,000, the cell population at time zero. Therefore,

y = 1,000,000(.9)t

This formula can also be derived by noting that each value in the Ay column is

negative one tenth of the y value just above it. That is

Ay = ( -.1)y.
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This proportional growth indicates an exponential function. The base must be one

plus the proportionality constant.

r = 1 + (-.1)

Thus

= .9

y = A (.9)t

and as above A is found to be 1,000,000.

The two examples we have just considered are simpler than many in one respect.

We do not have to deal with the problem of error. The bacteria problem was fanci -.

ful because the equation fits the data exactly. If the bacteria populations had

been obtained from measurements, we would not have been so fortunate as to obtain

an exact fit. In future lessons you will see how to fit data sets in which error

is involved.

PROBLEM SET 2:

Problems 1 through 5 concern the exponential function

y = 100(.8)t

1. Prepare a table displaying the values of y as granges from 0 to 4.

2. Add and fill in a Ay column. Pay attention to the signs of the Ay entries!

3. Inspect the y and Ay columns. What is proportionality constant K in the growth

equation Ay = Ky ?

4. What is the base r of the exponential function?

5. What is the relationship between the proportionality constant K and the base r?

Write a growth equation Ay = Ky for each of the following functions. It is not

necessary to prepare a table of values.

6. y = 20t

7. y = (1.1)t

8. y = (1.01)t

9. y = (.4)t

10. y = 13(.6)t

11. y = 19(l)t

12. y = 100(.01)t

82 1
13. y = 7F (rr) t

14. A savings account pays 10% per year. The initial amount is $500.

a. Write a growth equation Ay = Ky for the account.

b. Write an exponential function giving the amount in the account as a func-

tion of years t.

15. A particular colony of bacteria is known to grow at the rate of 8% per hour

during its "takeoff" phase.

a. Write a growth equation for the bacteria population.

b. Write an exponential function giving the population y in terms of hours

t. Assume the initial population to be 700.

9



16. A bacteria culture at a temperature of 30 °C is placed in a refrigerator at

0 °C. The Celcius temperature of the culture then decreases by 10% per minute.

a. Write a growth equation for the temperature T. AT = KT

b. Write an exponential function giving the temperature T of the culture in

terms of minutes passed t.

c.

Find the

17.
t

Use

exponential

the log table to estimate the temperature

function corresponding to

18.
y t

each of

y

at the

the following

Ay

end of 10 minutes.

tables.

Shrinkia. As you can

into negative popula-

0 1 0 2
4

1 4
3

6112 12
2 16 182

48 36
3 64 543

19. 20.
t y

Ay

0 1 0
9

1
25

.1 09 1
1

01
.009 2 1.001

3 5

21.

t y

22.

t y

0 1000 0 3

1 300 1 2

2 90 2
4
3

3 27

24.

Ay t y

23.

t y

0 400 0200 50 -20
1 1300
2 2450
3 3

of

(zpg)

Below we

see they

have

passed

the record of the population of the

right through "zero population

country

growth"

tion growth (npg).

10

t (years) y (population)

0 100,000,000 = 108

1 99,000,000

2 98,010,000

3 97,029,900

4 96,059,601

16



25. Write the growth equation Ay = Ky for the population.

26. Find the exponential function describing the table.

As a currency inflates, the amount that one unit buys becomes less. In other

words, the value of the unit decreases. In order to measure the relative val,le of

a currency, economists pick a given year for a standard. What one unit of cnrrency

bought in this year becomes the standard by which following years are measured.

In the country of Autoland the unit of currency is the "caddy." Below we have
a record of the value of the caddy over a period of years.

Years

Elapsed time
in years

(t)

Value of
the caddy

(y)

1980

1981

1982

1983

1984

1985

0

1

2

3

4

5

1.00'

.80

.64

.51

.41

.33

27. In 1981 it takes an entire caddy to buy what a fraction of a caddy (.80 caddy

in fact) would have bought a year earlier in 1980.

a. In 1984 one caddy buys what only (?) of a 1980 caddy would have bought.

In 1983 one caddy buys what it used to take only .51 of a 1980 caddy to buy. This

implies that it takes .51 or almost two 1983 caddies to buy what one 1980 caddy
bought.

b. How many 1985 caddies are needed to buy what one 1980 caddy bought?

28. Write an equation of the form y = r t
which describes the table.

29. a. In Coffeeland an economist noted that the currency lost half of its value
in a two-year period. Write.an exponential equation which relates the value, y,

of a Coffeelandish "bean" (the unit of currency) to time t. Let one time unit equal
2 years.

b. What is the value of the Coffeelandish "bean" after one year?

30. a. Another economist noted that the Coffeelandish bean lost about 30% of its

value in one year. Write an equation that relates the rate of change of the bean,
Ay, to the value of the bean, y.

b. Write an equation of the form y = r t
that relates the value of the bean,

y, to the number of years, t.

An ecologist is studying the amount of water pollutants in a pond. The table on
the following page shows the results of his measurements.

17 11



.2

31. Convert the table to one in

which 1 time unit = 5 days.

32. Find the exponential equa-

tion for the table of Problem 31.

SECTION 3: RADIOACTIVITY

t (da s) y ( allons)

0 25

5 20

10 16

15 12.8

3-1 Isotopes

In Section 1 we stated that exponential functions have many applications in

biomedicine. The time has come to present a few such applications. The first sub-
ject we will discuss is radioactivity. Radioactive substances are regularly used

for killing malignant tissue.

Perhaps you recall from the Respiration Unit that atoms are made up of three
kinds of particles. Most of the mass of the atom is concentrated in the nucleus

in the form of protons and neutrons. In the usual manner of visualizing the atom,

the less massive electrons revolve in orbits around the nucleus. Each electron

carries a negative charge and each proton carries an equal positive charge. The

neutron is electrically neutral; it carries no charge at

In a neutral atom there is no net electrical charge. The number of electrons

and protons are equal and consequently the positive and negative charges exactly

cancel out. The number of protons in the nucleus is called the atomic number, which

determines what element the atom represents. For example, atoms of hydrogen have
an atomic number of one. Any atom with one proton in the nucleus is an atom of
hydrogen.

If we add the number of protons and neutrons in the nucleus of an atom we get

the mass number of the atom. Sometimes atoms have the same number of protons but

different numbers of neutrons, and consequently different mass numbers. Such atoms,

all representing the same element but having different mass numbers, are called

isotopes of the element. There are three isotopes of hydrogen. They are pictured
below.

0 \I CO
simple

*
V.

hydrogen deuterium

OV)
ti

tritium

p = proton

n = neutron

e = electron

For short, these isotopes are usually designated as 1H 1
, 1H

2
and 1H 3

. As you can
see, the number of protons is written at the lower left of the H and the mass mm-
ber at the upper right.
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3-2 Radioactive Disintegration

Under most natural conditions, the different isotopes of an element mix togeth-

er completely. They behave the same way in chemical reactions and indeed, it was

a long time before physicists discovered that different isotopes exist. However,

there is one way in which some isotopes differ dramatically. In these unstable iso-

topes, the forces that ordinarily hold atoms together eventually give way in a pro-

cess called radioactive disintegration. The atom emits some sort of particle or

ray and changes into an atom of another element. For example, 1H3
, the tritium iso-

tope of hydrogen, is unstable. When an atom of tritium disintegrates, a neutron in

the nucleus splits into a proton and an electron. The new proton remains in the

nucleus and the new electron is ejected away from the atom. The atom now has two

protons in the nucleus, but only one revolving electron. In order to become elec-

trically neutral the atom captures a free electron somehow. The final result is

2
He

3
, a helium atom. The steps in the process are pictured below.

._..,
\

4

\\I
;

A Tritium Radioactive Electron Capture
Atom

1
H3

Disintegration
to form

2
He 3

The above process is only one kind of radioactive disintegration. There are

several other kinds, involving the emission of different types of particles.

3-3 The Mathematics of Radioactivity

There is no way to tell exactly when an individual atom of a radioactive sub-

stance will disintegrate. If we examine the substance we find that some of the

atoms disintegrate after a few seconds and others after days or years. However,

when a large number of the unstable atom are present, we can say with certainty what

fraction of them will disintegrate within a given length of time called the half-

life, at the end of which time half the atoms will have disintegrated. If another

half-life period passes, then half of the remaining atoms will disintegrate, and so

on. The table below summarizes the process.

Elapsed Time in Fraction of Substance
Half-Lives Remaining

0 1

a
1

2

1 1
2 T or (.2-)

1 1
3 T or (.2-)

1
4 1.-;- or t2, 4

1 1
5 TT or (2-)

13
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We can use the table to find an equation for the amount of radioactive sub-

stance remaining after any length of time. Suppose that we let Ao represent the

initial amount of the substance, the amount at time zero. If A designates the

amount at a later time t, then A is just the fraction of substance remaining. P'it

0 1the right column of the table says that this fraction is just (2)t, where t is the
1

itime elapsed measured in half-lives and y is the common ratio.

A
1

= (f)
t t measured in half-lives

0

In our usual exponential function notation this becomes

A = A
0 2

(1) t

For the purposes of calculation we convert the first of the above equations by

taking the Log of both sides.

log
A
AO

1= log (y) t

1
= t log -2-

= t (log 1 - log 2)

= t(0 - .301)

= -.301t

EXAMPLE:
15

6C , an unstable isotope of carbon, has a half-life of about 2.4 seconds. If

you start with 10 grams of this isotope at time zero, how many grams will remain

after 3.6 seconds?

SOLUTION:

The initial amount A
0

is given as 10 grams. The time interval represents

3.6 1.5 half-lives
2.4

You can now use the formula to compute A, the amount remaining.

log
A -.301t
A
0

log
A

-.301(1.5)A
0

log
A

-.452A
0

log
A .548 - 1
A
0

The mantissa of this logarithm is .548 and the characteristic is -1. Refer-

ring to the log table, we find the number closest to .548 in the log y column. It

turns out to be .544, which corresponds to a y value of 3.5. Therefore

Aru = 3.5 x 10-1

= .35

A = 3.5 gms

14 20



EXAMPLE:
7

4
Be

, an isotope of Beryllium, has a half-life of about 53.4 days. How many

days must pass before the amount of a sample is reduced to 18% of its original

value?

SOLUTION:

We know that 18% of the original sample remains. That is,

A
= .18

A0

Substituting into the formula

log 2 = -.301 tA
0

log .18 = -.301 t

we now refer to the log table and find that log .18 = - .745.. Therefore

-.745 = -.301t

2.5 = t

Don't forget at this point that t is expressed in half-lives! In order to convert

to days, we recall that the half-life is 53.4 days.

t(days)
53

x 2.5 half-lives
'4

dais_
half-lie

= 133.5 days

PROBLEM SET 3:

1. The atomic number of an atom is the number of in the nucleus.

2. The mass number of an atom, is the total number of and in

the nucleus.

3. The difference between the mass number and the atomic number gives the number

of in the nucleus.

4. The number of determines what element the atom represents.

5. Different isotopes of an element have the same (atomic number, mass

number) but different (atomic numbers, mass numbers).

6. The 'of a radioactive isotope is the length of time necessary for the

initial amount to be reduced by half.

Problems 7 through 10 should require only a few simple calculations with powers of

two. There is no need for a log table.

7. What fraction of a radioactive substance will remain after three half-lives

have passed?

8. A certain radioactive isotope has a half-life of one hour. If the initial

amount is one gram, how much will remain at the end of six hours?

9. An isotope has a half-life of twenty minutes. Starting with 16 grams, how

many hours must pass before only half a gram remains?

2
15



10. What is the minimum whole number of half-lives which must pass before less than

one-thousandth of a radioactive isotope remains?

In the following problems you will need to make use of the log table.
15

11. 80 , an isotope of oxygen, has a half-life of 124 seconds. If the initial

amount is 10 milligrams, how much will remain at the end of 297.6 seconds? Round

to the nearest .1 milligram.

Not long after the discovery of radioactivity, scientists realized that expo-

sure to radioactive substances can kill human tissue. This opened the way for ra-

diation therapy, which involves the use of radioactive substances to destroy can-

cerous tissue.

12. The thyroid gland at the base of the neck secretes the hormone thyroxin. This

hormone contains iodine. If iodine is injected into the bloodstream, most of it

will end up in the thyroid gland. For this reason, injections of the radioactive

isotope 531 132 can be used to treat cancerous growths in the thyroid gland.

The half-life of I
132

is 2.3 hours. What percentage of this isotope will still

be present in the body 10 hours after injection? Round your answer to the nearest

whole percent.

13. Polycythemia vera is a slow, progressive disease which involves an abnormal in-

crease in red blood cells. One type of treatment involves the injection of the ra-

dioactive isotope
15

P
32 of phosphorus. This isotope tends to accumulate in the

cells where blood cells are produced, reducing the output of blood cells.

If the half-life of
15

P
32 is 14.3 days, what percentage is still around at the

end of a week? Round to the nearest whole percent.

14. The potential of radioactive substances to become concentrated in certain tis-

sues can be a serious health hazard. Fallout from nuclear testing is one source of

dangerous substances. The isotope 38Sr
90 of strontium can be particularly harmful

because it behaves much like calcium and builds up in bone tissue and also in human

milk.

38Sr
90 has a half-life of 28.1 years. Of the strontium deposited in a baby's

bones, what percentage will still remain at the end of an average life-time, 70

years? Round to the nearest whole percent.

15. Some radioactive isotopes have half-lives greater than the total age of the

earth. One is
78

Pt190 , an isotope of platinum, with a half-life of 7 x 10
11 years.

How much time must pass to reduce a quantity of platinum to 1% of its original

value?

16. The isotope 11Na 22 of sodium has a half-life of 2.6 years. If 8 grams of

11
Na

22 are present a year after an experiment began, how many grams were present

when the experiment began? Round to the nearest tenth of a gram.

*17. In an experiment using a radioactive isotope, a routine check shows that 60%

of the isotope remains. A check one year later shows that 20% remains. What is

the half-life of the isotope?

16
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SECTION 4: RADIOACTIVE DATING

4-1 Radioactive Clocks

We can summarize the ideas in the last section by thinking of a radioactive

substance as a sort of clock.

O
74/

Time in Half Lives

Fraction of Isotope Remaining

The face of the clock is calibrated in half-lives, and with each passing half-

life the amount of radioactive substance is reduced by half. We can predict the

fraction of isotope left after any length of time by using the formula

A 1 t
(7)

t in half-lives
0

Of course the formula could just as well be used in reverse. The decrease in

the amount of isotope could be used to compute the elapsed time. This offers the

fascinating possibility of determining the ages of ancient artifacts or rocks. If

we could measure the present amount of isotope in a rock sample, and then somehow

figure out how much of the isotope was present when the rock was formed, we could

compute the age of the rock. The theory is simple enough, but the technical prob-

lems are formidable. Nevertheless, radioactive isotopes have been used successfully

in determining the ages of fossils, rocks and even the earth. Several different

isotopes are used; we will concentrate on 6C
14 , usually called Carbon-14.

4-2 The Carbon-14 Radioactive Clock

As you know, carbon compounds play a central role in the chemistry of life.

All living things contain carbon, which occurs in three isotopes, 6C
12

, 6C
13 and

6

014
. Carbon-12 and carbon-13 are stable, but carbon-14 is radioactive. It decays

to
7
N14 , an isotope of nitrogen. A small percentage of the carbon which exists in

the form of carbon dioxide in the atmosphere is carbon-14. Naturally it finds its

way into the food chain and consequently living plants and animals are continually

taking in small amounts of the radioactive isotope. This pattern stops abruptly

once the plant or animal dies. No more carbon-14 is taken in, and that which is

present disintegrates as time passes. When we find the remains of a living thing,

17
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such as a piece of charcoal from an ancient fire, the amount of remaining carbon-14

is an indication of the time elapsed since its death. Of course the stable carbon-

12 and carbon-13 do not decay but simply remain in their original amounts.

Let us look at this process in more detail. In order to pin a specific ,e on

a piece of charcoal, we must know how much carbon-14 there is in it now and how much
carbon-14 there was in it when the tree died. We also need to know the half-life
of carbon-14. How can these various quantities be determined?

An indispensible tool in all these determinations is the geiger counter. Each
time an atom disintegrates it emits a high-velocity particle. When the particle
passes through the chamber of the geiger counter, it momentarily closes an electri-
cal circuit and is recorded on the counting mechanism. This leads to a number cal-
led the sample activity, which is just the number of disintegrations per minute per
gram of sample. If one is lucky enough to know exactly how much radioactive isotope
the sample contains, then the sample activity can be used to compute the half-life.

The half-life of carbon-14 is usually assumed to be 5568 years, although recent evi-
dence suggests that this figure may be too low.

The next problem centers on determining the amount of carbon-14 still present
in the sample of charcoal. How can this be done? Again the geiger counter can be
used to advantage. The number of disintegrations is proportional to the amount of
carbon-14 present. Therefore one need only measure the sample activity with a gei-
ger counter. This is simple in theory, but not in execution.

may contain other radioactive substances besides carbon-14.

contribute to the geiger count, making the reading too high.

solved by seperating some carbon from the rest of the sample,
by burning the sample with oxygen to produce CO2.

New the activity of a certain amount of the CO2 can be measured with a geiger
counter. Before this can be done, however, steps must be taken to reduce the back-
ground count. Part of this count is caused by cosmic rays which originate outside
our solar system. Another part of the background count is due to the small amounts
of radioactive substances which contaminate even the most carefully controlled lab-
oratories. In order to cut down on background radiation, the CO2 sample and geiger
counter are placed in a steel cylinder, surrounded by a mercury shield, and placed in
an iron vault. This suffices to absorb most foreign particles before they can reach
the geiger counter.

First, the charcoal

These substances would

This problem can be

which is usually done

After taking the precautions listed above, the activity of the sample can be
measured with considerable accuracy. The activity is usually expressed in disin-
tegrations per minute per gram of carbon.

This brings us to the final puzzle. How can we determine the initial amount
of carbon-14 in the piece of charcoal? We cannot determine this by direct observa-
tion; our answer must be based on guesswork.

18



The life of a carbon-14 atom starts high in the earth's atmosphere when a ni-

trogen-14 atom is struck by a cosmic ray. Carbon-14 atoms are continually created

this way, and are subsequently mixed throughout the atmosphere. Finally, they de-

cay back to nitrogen-14. Scientists have assumed that the birth and decay processes

occur at about the same rate, suggesting that the percentage of carbon-14 in the

atmosphere remains the same. Therefore we would expect that the percentage of

carbon-14 in living things has not changed much either. When the sample piece of

charcoal was part of a tree, we figure that it had the same percentage of carbon-14

as a living tree does today. This means that the charcoal must have originated from

a tree which had an activity of 12.6 disintegrations per minute per gram of carbon.

4-3 Mathematics of Radiocarbon Dating

Starting with the formula

A
1

(7)

t t in half-lives
0

it is not hard to develop a specific formula for radiocarbon dating. Since the

sample activity is proportional to the amount of carbon-14 present, we can replace

the fraction A by the ratio of sample activities. Let S be the current activity.

The original activity was 12.6 disintegrations per minute per gram of carbon.

Therefore
A S
A
0

12.6

So the original formula becomes
1

12.6 (2)t t in half-lives

Notice that t is measured in half-lives. Let x be the time in years and recall

that the half-life of carbon-14 is 5568 years. Then

x years = 5568 years (t half-lives)half-life

x = 5568t

x
5568 t

Substituting this expression in for t in the formula gives

x
4, 5568

12.6 'f'
x in years

Now we take the common logarithm of each side
x

log _IL (1)5568- log (y)
12.6

log S - log 12.6 =
5568 (log 1 - log 2)

x
= (0 - .301)

Referring to a log table we find that log 12.6 = 1.1. Therefore

log S - 1.1 - 301x
5568

Solving this equation for x, we get

x = 20,350 - 18,500.1og S
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EXAMPLE:

Suppose that a piece of charcoal has an activity of 10.0 disintegrations per

minute per gram of carbon., What is its age?

SOLUTION:

S = 10.0 which means that log S = 1. Therefore

x = 20,350 - 18,500 1

= 1850 years

4-4 Final Remarks on Radiocarbon Dating

We mentioned earlier tha:. radiocarbon dating requires certain assumptions.

The primary assumption is that the proportion of carbon-14 in the atmosphere, and

consequently in living things, has been constant for the past 40,000 years. Re-

cently it has been possible to test this assumption through the study of tree growth

rings. Each year a tree forms a new growth ring. In order to determine the age of

a tree one need only take a section and count the rings. rtain bristlecone pine

trees from the White Mountains of California have been fr., to be as much as 4600

years old. Using a combination of living and dead trees, ntists have managed

to trace tree rings back for about 8000 years.

How does this tie in with radiocarbon dating? The important point is that any

inner ring of a living tree is essentially dead; it is no longer incorporating new

carbon. Therefore, the carbon-14 in the ring has been decaying since the year the

ring was formed. This means that the tree ring can be dated by the radiocarbon

method and the result compared with the true age. This technique has shown that

some radiocarbon dates are in error by as much as 700 years. Apparently the inci-

dence of carbon-14 in the atmosphere has varied somewhat, probably because of dif-

ferent cosmic ray levels in our upper atmosphere. Radiocarbon dating is still very

useful, but the values so obtained have to be corrected.

PROBLEM SET 4:

1. Carbon-14 atoms are produced through bombardment of nitrogen-14 atoms by

2. The half-life of carbon-14 is usually assumed to be years.

3. The sample activity of living trees today is about disintegra-

tions per minute per gram of carbon.

The following numbers are typical sample activities measured in disintegrations per

minute per gram of carbon. In each case determine what percentage of the original

carbon-14 remains in the object.

4. 6.3 for a piece of shell

5. 2.52 for a piece of rope

6. 4.41 for a mummified aardvark

20
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The noted archeologist Professor Arte Fact has just finished measuring the sample

activities of a few relics lying around his laboratory. All the activities are

measured in disintegrations per minute per gram of carbon. Find the age of each

object. You will need to use the log table in these problems.

7. 11.0 for wood from an old log

8. 9.5 for wood from a mummy coffin

9. 9.2 for wood from a Syrian palace

10. 8.7 for part of a Sequoia tree felled in 1874

11. 8.0 for a piece of an Egyptian funeral boat

12. Uranium-238 has a half-life of 4.5 x 10 9 years. A scientist reasons that a cer-

tain rock contains ,bout 62% of the uranium-238 which it contained when the earth

first cooled from a molten state. Use this information to estimate the age of the

earth.

SECTION 5: DRUG METABOLISM AND ELIMINATION

5-1 Drug Concentrations in the Bloodstream

What might we expect to observe when a drug is given to a patient?, First the
drug is absorbed and distributed throughout some part of the body. There will be
parts of the body where the drug is not absorbed, bones for example. On the other
hand almost all drugs will distribute themselves throughout the bloodstream. The
exact volume of the body which will absorb the drug will vary depending on the drug
and the size of the individual. This volume is called the volume of distribution.

As the drug is absorbed, the concentration in the bloodstream will rise until
a peak level is reached. Then the concentration will begin to drop as the drug is
excreted in the urine and broken down by the metabolic processes of the body. This
is the phase of metabolism and elimination.

You have already studied the above processes in the case of alcohol. The graph
on the following page shows blood concentration as a function of time. For the
first two hours the alcohol is being absorbed and the blood concentration is rising.
Then it reaches a peak and starts to decrease.
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Notice that the metabolism and elimination phase is described by a linear

function. In this respect alcohol is very unusual. Most drugs obey a law of expo-

nential decrease in this phase. This is true because the rate at which the drug is

metabolized (and eliminated) is proportional to the amount of drug present in the

body. Whenever this type of proportionality occurs, an exponential function will

turn up. We can describe the situation for most drugs by the following curve.

Blood
oticerrtr a_*ton

77 r-v) e >

The decrease in the blood concentration of the drug is similar to that of a radio-

active isotope. Different drugs have different half-lives, just as in the case of

isotopes. A knowledge of the half-life of a drug allows us to predict future l000d

levels and therefore to plan the proper interval between doses. The study of drug

absorption, metabolism and elimination is called pharmacokinetics. This is a very

active area of research today.
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5-2 Calculations for a Specific Example

In order to do some calculations we are going to make the simplifying assump-

tion that the absorption phase is instantaneous. That is, we will assume that the

drug distributes through the volume of distribution immediately. In the case of an

intravenous injection this assumption is not too far off base.

Suppose we take the drug Digoxin, which is used for heart patients. Suppose

that the initial dose is .5 mg, the volume of distribution is 400 liters and the

half-life is 36 hours.

EXAMPLE:

Find the initial blood concentration in -4152.liter

SOLUTION:

In this case the volume of distribution is too large to be considered as an

actual volume in the body, but we proceed as if it were. In this case the volume

of distribution behaves more as a proportionality constant.

We have .5 mg of the drug distributed over 400 liters. Therefore the initial

concentration is
.5 m 1.25 x 10

-3 mg
400 ligters liter

EXAMPLE:

Find the concentration of the drug at the end of 24 hours.

SOLUTION:

We may use the same equations which applied to radioactive isotopes. If A0 is

the initial concentration of the drug, A the new concentration and t is measured in

half-lives, then

or

24
Now 24 hours represents .-- = .67 half-lives. Substituting t = .67 we have

log r
A
- = -.301 (.67)

1.10

1A = A0 (7)
t

A
log

T cT
= -.301t

= -.202

Hence
A
- = .63

A
0

Therefore A = (.63)A0

A = (.63)(1.25 x 10 -3
)

A = 7.9 x 10 -4 mg
liter

EXAMPLE:

At the end of 24 hours the patient receives an additional dose of .16 mg.

What is the new blood concentration?
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24

SOLUTION:

According to the above calculations the patient has a concentration of 7.9 x

10
-4

l
.m g

r
when the dose is given. The new dose of .16 mg distributes over the

iliter
volume of distribution of 400 liters, giving an additional concentration of

.16 my - 4 x 10-4 mg
400 liters liters

In order to obtain the new concentration we must add concentration due to the new

dose and the concentration remaining from the initial dose.

4 x 10-4 -42E- li
+ 7.9 x 10-4 1.19 x 10-3 mg

liter liter ter

PROBLEM SET 5:

1. Merperidine (demerol) is a drug used for the relief of pain. The volume of dis-

tribution is 50 liters and the half-life is 3 hours. No log table is needed to

answer the following questions. Round answers to the nearest .01 1J12---
liter'

a. Suppose that an initial dose of 50 mg is given. What is the initial con-

centration in 415.--liter ?
b. What will the concentration be at the end of 6 hours?

c. Suppose that at the end of 6 hours, an additional 30 mg is given. What

will the new concentration be?

d. What will the concentration be at the end of another 6 hour period?

e. If another dose of 30 mg is then given, what will the concentration be?

2. The antibiotic Erythromycin has a volume of distribution (for a typical person)

of 40 liters and a half-life of 1.5 hours. No log table is needed to answer the

following questions. Round answers to the nearest .1 mg/liter.

a. If an initial dose of 400 mg is given what is the initial blood concentra-

tion in mg/liter?

b. At the end of 6 hours what is the concentration?

c. At the end of 6 hours an additional 400 mg is given. What is the new con-

centration?

d. What will the concentration be at the end of another 6 hour period?

e. If an additional dose of 400 mg is then given, what will the new concentra-

tion be?

3. The drug Quinidine is often used in cases of heart failure. The half-life is

6 hours and the volume of distribution is 16 liters. You will need to refer to the

log table in answering the following questions. Round to the nearest 1 1151_

liter'
a. If an initial dose of 400 mg is given what is the initial blood concentra-

tion?

b. At the end of 8 hours, what will the concentration be?

c. If an additional dose of 400 mg is then given what will the new concentra-

tion be?

d. At the end of another 8 hour period what will the concentration be?
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The antibiotic Streptomycin has a volume of distribution of 20 liters. The half-

life is 2.5 hours.

4. An initial dose of 500 mg is given. How long will it be before the blood level

drops to 4.75 41.9--?
liter

5. An initial dose is given and at the end of 5 hours the concentration is 5 .liter
What was the size of the initial dose in mg?

The antibiotic Penicillin G has a volume of distribution of 30 liters and a half-

life of .7 hours.

6. A dose of 450 mg is given. What is the initial concentration?

7. How long before the concentration has dropped to 1 .EL
l

(to nearest .1 hr)?
iter

8. How long before the concentration drops to .01
liter
42 (to nearest .1 hr)?

SECTION 6: EPIDEMICS

6-1 Examples of Epidemics

The word epidemic is used to describe a situation in which a large portion of

a population is stricken by a single disease. Disastrous epidemics have occurred

intermittently throughout history and at times, the resulting deaths have signifi-

cantly reduced the total human population. In order to occur in epidemic propor-

tions, a disease must be highly contagious, and the immunity of the population must

be relatively low. Naturally, only certain diseases can create epidemics, and it

is no surprise that we encounter the same ones repeatedly in historical accounts.

Among all the diseases which have occurred in epidemic proportions, the most

devastating has been bubonic plague, or "black death." Bubonic plague is primarily

a disease in rats, but it is sometimes carried to humans when they are bitten by in-

fected fleas. Wherever humans and rats live in close association, as in most cities,

there is the danger of plague infection. In humans, the disease attacks the lymph

and respiratory systems, is highly contagious and spreads rapidly. Before the de-

velopment of adequate medical care, 50 to 90 percent of cases ended in death.

Early writings confirm that bubonic plague was epidemic long before the Chris-

tian era. Many outbreaks have occurred since then. A severe epidemic between 1347

and 1351 killed 75 million people. In London, during the early seventeenth century,

up to four thousand people a week died of plague. The last major epidemic occurred

in the late 1800's and spread worldwide.

Although the plague bacteria is permanently established in rodent populations

in the United States, the disease has not been an important problem in this century.

Antibiotics such as Streptomycin are effective in treatment and vaccines are avail-

:le for protection against epidemics.

25



Another epidemic disease which does not respond to antibiotics and which has

remained a problem in the twentieth century is influenza. Influenza is a virus in-

fection of the respiratory system, often accompanied by complications such as pneu-

monia. It began to appear in epidemic form about a century ago, and in 1918, it

was responsible for between 20 and 40 million deaths. More recently in 1957-1958,

40 million people in the United States became ill with a variety of influenza called

Asian flu. Authorities estimate that more than 60 thousand deaths resulted from

Asian flu and resulting medical complications during this epidemic.

The only protection against influenza is to be found in periodic vaccination.

If a person does become ill with the disease the most important factor is prompt

treatment of any resulting medical complications.

6-2 The Growth of an Epidemic

The typical epidemic begins with only a few cases of the illness and then grows

rapidly as more people are infected. The general pattern is clear from the follov-

ing table which gives the weekly plague deaths in London during part of the year

1625.

Week ending

April 7

14
21
28

May 5

12
19
26

June 2

9

16
23
30

Plague
deaths

10
24
25
26

30
45
71
78

69
91

165
239
390

The growth is erratic but in general it seems that the more people affected, the

faster the epidemic grows. Following this line of reasoning we might guess that

the rate of infection of an epidemic is proportional to the number of people al-

ready infected. If we let I represent the number of infected individuals, this no-

tion can be expressed as follows.

= KI

Therefore I must be an exponential function of time.

I = Ar
t

This equation might be fairly accurate at the beginning of an epidemic but

what about later on? No epidemic can grow indefinitely because eventually there

are no more people to catch the disease. Therefore the growth of the epidemic must

slow down at some point. The equation above provides a promising start but it

fails in this respect because it never stops growing.
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6-3 Another Approach

In order to come up with a more accurate model we must rethink the problem.

Suppose that the following conditions hold for a certain disease.

1. Everyone is susceptible to the disease (i.e., no one is immune)

2. Once infected, an individual is always infected and can spread the disease.

3. There are no deaths from the disease.

4. No measures are taken to prevent the spread of the infection (i.e., there

is no medical treatment, etc).

Suppose we concentrate on the population of a given city. Let

N = total population of the city

H = number of healthy individuals

I = number of infected individuals

Note that at any time the total N is just the sum of the numbers of healthy and in-

fected individuals. N = H + I

How would we expect the number I to grow? If I is small then the infection

will not grow too fast. Likewise, if H is small then I will not grow fast either

because there are only a few people left to contact the disease. I will grow fast-

est when both I and H are large.

Slow Growth Fast Growth Slow Growth

It turns out that the following equation fits the situation we are describing.

= Nat

where

a = some constant characteristic of the disease

t = time measured in days

Iis the ratio of healthy to infected individuals; suppose we call this ratio R.

The number of infected people can be easily computed.

H
Y

Remembering that H + I = N, the above equation can be written as

N - I R

Solving for I,

Therefore

N - I = IR

N = I + IR

= I(1 + R)
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pROBLEm
SET 6:

t in
Prepare a graph displaying the data days

on Plague
deaths shown in the table of 0

section
1

epidemic in New York 2SuPP°se that an
City begins when one person becomes in- 3

fected with
a disease. The population 4

of New
city 5is about 10 million, so

N lo Suppose that a = 116 for the 6

disease 7consideration. Then the
equation 8

= Na t 9

becomes 10

1I = 10 7
x (Tu)

t 11

12
second column of the2' Fill in the l

13table h,
opposite.s--wn o sit

14
The equation

H
I = R

I

Number of
Infected Persons

1
I = 1 + RN

for the number of infected people, now becomes

1 7I = 1 + R 10
3. Fill third Column of the table. Round pll Df your entries so that there

iS°1-----2.1Y------.
one non -zero digit

4. On a Deice of graph paper plot I as a function of t in days.

5. Write equation of the form t
1 :.= Ar

which
ill'

(0,.,

oribes the course of the epidemic 1):: the days 0 to 5.

SECTION 7:
coNVERTING EQUATIONS INTO THE FORM y = Art

7-1 introduc ti°n

You have now seen several examples of the application of exponential functions

in aPP"e0 problems. Two aspects have been Considered SO far. One involves making
predictions when an exponential function is given, such as predicting the course of

an
epidemic

or the remaining amount of a radioactive isotope. Secondly, you have
seen -°W to find the exponential function corresponding to a table of values. How-

spaced
eller' the tables were of a special type. First, the time values were always evenly

and
seco nd, there was always an exponential function which fit the given

values exactly.

IE
We are experiment the chancesdealing with a table of data from an actual

are remote
that an exponential function will fit it exactly. This is because error

involved. In the coming sections we will endeavor to answer two questions.
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1. Given a data set, how can we determine if an exponential function is appropriate

to describe it?

2. What is the equation of the "best" exponential function describing a given set

of data?

7-2 Converting Equations into the Form y = Ar t

In order to answer the questions above it will be necessary to work with expo-

nential functions which appear in various forms. Up to this point all the func-

tions have been expressed in the form y = Art. In order to convert equations into

this form we must make use of the following basic exponential properties.

(as) (aw) = a
s+w

(S.S)W = S.SW

-s 1
a =

a

We will also need to recall that the functions y = 10x and x = log y are inverse

functions. Therefore the following identities hold.

10 1og
y = y

log 10x = x

We are now ready to look at some examples of converting equations into the

form.y = Ar t
.

EXAMPLE:

Convert the euqation

y = 5(2) 6t

into the form y = Art.

SOLUTION:

Notice that the variable t has a coefficient of 6. It is for this reason that
the function is not in the form y = Art.

We use the multiplicative law of exponents.

y = 5(2) 6t

= 5(2 6
)
t

= 5(64) t

The equation is now in the desired form with A = 5 and r = 32.

EXAMPLE:

Convert the equation y = 100(3)-2t

SOLUTION:

We again use the multiplicative law along with the property a s
=

1

a
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y = 100(3)
-2t

= 100(3
-2

)

t

= 100( ) t
32

1
= 100 (7)

t

Hence, A = 100 and r =
1

9.

EXAMPLE:

Convert the equation y = 2 4x + 7

SOLUTION:

In this example the additive law of exponents must also be used.

Y = 2
4x + 7

(24x)(27)

(27)(24x)

= 128 (24x)

= 128 (24)x

= 128 (16)x

Hence A = 128 and r = 16.

EXAMPLE:

Convert the equation log y = 2t 3

SOLUTION:

In order to eliminate the log function on the left side we recall that

101°g Y = y. We therefore write each side of the equation as a power and then pro-

ceed as before.

101°g = 102t-3

y = 102t-3

y = (102t) (10-3)

y = (10 -3
) (10

2t
)

y =
1

--y (10
2

)

t

10
1

(100)
t

Y 1000

Often it is necessary to perform calculations with logarithms in problems of

this type, as the following example illustrates.

EXAMPLE:

Convert the equation log y = -.3t + 1.2

SOLUTION:

Again we write both sides of the equation as powers and use the fact that

101°g Y = y.
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10
1og y 10-.3t+1.2

y = 10 1.2 (10
-.3

)

t

y = 101.2 , 1 ,t

10'
The log table is now used to determine 10 1.2

and 10
.3

. We find that 10 1.2 = 16 and
10

.3
= 2. Therefore

y = 16(l)t
EXAMPLE:

In the presence of adequate nutrients the bacteria E. Coli will double each 17
minutes. Starting with a population of one cell at time zero, write an equation re-

lating the population y to the time t measured in hours.

SOLUTION:

We can begin by noting that if S represents time measured in 17 minute units

then the equation must be

Y = 2
S

60Now let t represent time measured in hours. When t = 1, S must be IT = 3.53.

Therefore S = 3.53t. Hence

Y = 2
3.53f

is the desired equation.

Finally we convert this to the form y = Art.

y = (2
3.53

)
t

Using the logarithm table we find that 2 3.53
= 11.5. Therefore

y = (11.5)t

PROBLEM SET 7:

Convert each of the equations in Problems 1 - 23 to the form y = Art or y = Arx.

1. y = 3
2
t 13. y = 52x-2

2. y = 2
4x

14. y = 10 -2t+3

3. y = 5
3t

15. y = 3(2 -4x+3 )

4. y = 3(2
3f

) 16. log y = 3t + 2

5. y = 100(72x) 17. log y = -2t + 4

6. y = 50(1)3x 18. 1.1g y = -x - 3

7. y = 1000(.1) 3t
'og y = 6t - 2

8. y = 8
-2x

20. log y = .5x + .2

9. y = 10
-3x

21. log y = .3t - 3.4

10. y = 12-t 22. log y = -.4x + 1.3

11. y = 2
-5t

23. log y = -1.6t - 2.8

12.
8t+2
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Solve for y.

*24. log y = 9 log t + 2.2

In each of the following problems a type of bacteria is given along with the length

of time necessary for the population to double. In each case write an equation de-

scribing the population as a function of time measured in the units given. Assume

each population starts with one cell.

25. Bacillus mycoides 28 min., t in hours. (Round the base to nearest .1)

26. Bacillus thermophilus 18 min., t in hours. (Round base to nearest integer)

27. Lactobacillus acidophilus 75 min., t in hours. (Round base to nearest .01)

28. Mycobacterium tuberculosis 900 min., t in days. (Round base to nearest .01)

29. Rhizobium japonicum 360 min., t in days. (Round base to nearest integer)

30. Treponema pallidum 1980 min., t in days. (Round base to nearest .001)

SECTION 8: FTMDING THE EQUATION FOR A SET OF DATA

In Section 7, two questions were posed. We repeat them here.

1. Given a data set, how can we determine whether an exponential function is appro-

priate to describe it?

2. What is the equation of the "best" exponential function describing a given set

of data?

In this section we will present a procedure for answering both these questions.

The seeds of this technique appeared in Problem Set 7 in which you were asked to

convert equations such as
log y = 5x + 3

into the form y = Arx. In other words, you were asked to convert a linear relation-

ship between log y and x into an exponential relationship between y and x.

This process also works in reverse; if y and x are related by an exponential

function y = Arx

then we can take the log of both sides of the equation to obtain a linear relation-

ship between log y and x.

y = Arx

log y = log Arx

log y = (log r)x + log A

We are now in a position to answer the first question above.

If the relationship between log and x is linear then the relationship between

y and x is exponential.
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As an

the relationship

low. This

Science, Unit

example, suppose we wish to know

between concentration and

table records sample results from

I.

Concentration x
ml indicator in
10 ml solution

if an exponential function will describe

per cent transmittance in the table be-

Laboratory Activity 31 in Biomedical

Per Cent
Transmittance

y
0 100.0

1 89.5

2 68.0

3 59.0

4 47.5

5 37.0

6 30.5

7 24.0

8 19.0

9 14.0

10 11.5

Step 1:

Add a log y column to the table.

lo

0 100.0 2.000

1 89.5 1.952

2 68.0 1.833

3 59.0 1.771

4 47.5 1.677

5 37.0 1.568

6 30.5 1.484

7 24.0 1.380

8 19.0 1.279

9 14.0 1.146

10 11.5 1.061

Step 2:

Graph the (x, log y) ordered pairs as shown on the following page.

A line has been drawn that best approximates the point set. The relationship
between log y and x is very nearly linear, and therefore the relationship between
y and x is very nearly exponential.

Once we have decided that an exponential function is appropriate, the final

step is to find the equation for the function.
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Step 3:

Draw the best approximating line and find its equation. The line has already
been drawn on the graph. In order to find the equation of the line, we need to
determine its slope and log y - intercept. The log y-intercept is easily seen to
be 2 by inspecting the graph. The slope

determine the rise and run from the two

A = (0,2)

rise =

run =

=

slope

is

points

B

1.08

-.92

10 -

p

-.92

determined in the usual manner. We

A and B.

= (10,1.08)

- 2

0

10

= -.092

We now have the information we need to write an equation for the line.

log y = -.092x + 2

Step 4:

Convert the linear equation to an exponential equation. In order to do this
you simply follow the same technique as in the last problem set.

10 1og
y

10-*
092x+2

y = (102)(10-'092)x

y = 100(.81)x

and we are done.

The technique just described allows us to start with a table of values and end
up with an equation. It is important to note that it also allows us to see the de-
gree to which error enters into the process. The role of error may be -seen in the
degree of nonlinearity of the points. For example, suppose the points looked like
a flvswarm. Then the effect of error would be so bad as to defy description. Cer-
tainly an exponential equation wouldn't describe the data. On the other hand sup-
pose the points looked like they were on a smooth curve. Then, we would have rea-
son to suspect that an exponential equation was inappropriate.

PROBLEM SET 8:

The graph on the following page shows the results of several measurements of
a rabbit's pulse rate r as a function of atmospheric temperature t in degrees Cel-
cius. As you can see, log r has been plotted as a function of t and an approximat-
ing line drawn in.
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1. What is the vertical intercept of the line? to the nearest .01?

2. What is the slope of the line? Round to nearest .001.

3. Write the approximate equation of the line.

4. Find the exponential equation corresponding to the equation of Problem 3.

Follow the procedure in the text to write an equation of the form

y = Arx

which approximately describes the data in each table shown on the following page.

Show all work.
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5.

x y

0. 99.5

1 78.0

2 64.0

3 46.5

4 36.5

5 29.5

6 22.0

7 16.5

8 14.0

9 11.0

10 8.0

6.
x y

0

1

2

3

4

5

6

7

8

9

10

100.0

80.0

67.0

54.5

46.5

38.0

33.0

28.5

23.5

19.5

16.5

On the following page is a picture of a seashell which has been sliced in half.

The shell belongs to an animal called the chambered nautilus which lives in deep

waters of the Pacific and Indian oceans. The shell resembles that of a snail and

is divided into numerous compartments. At one time or another, the animal lived in

each compartment, moving to the next larger one when quarters got cramped.

It turns out that the nautilus shell grows at a rate proportional to its size,

which leads to an exponential relationship. The relationship can most easily be

studied by looking at the edge of the shell which spirals outward from the center.

Your instructor will give you detailed instructions on the following problems.

7. Complete the r and log r columns in

the table shown opposite. r is the dis-

tance from the origin of the coordinate

system to the edge of the spiral (measure

in centimeters). The 0 entries are in-

tegral multiples of 90°.

8. On a piece of graph paper, plot log

r as a funciton of 0 (in radians) and

draw the best line through the resulting

points.

9. Find the exponential equation relat-

ing r and 0.

e r(cm) log r

90°

180° (7)

270°

360° (27)

450°

540° (37)

630°

720° (47)

810°

900° (57)

990°

1080° (67)
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SECTD 9: A COOLING EXPERIMENT

9-1 An E;:ample of an'Exponential Function

In Cnis section you are going to perform a simple experiment that leads to a

concrotc example of an exponential function. In the process you will use graphing

techniques to find the equation for the specific exponential function.

Suppose that a volume of water is heated to boiling and then removed from the

heat. What will happen to the temperature of the water? Certainly the water will

cool, approaching room temperature. If we let D be the difference between the water

temperature and room temperature, then we expect D to get smaller as time passes.

Moreover, it seems reasonable that when D is large, the cooling will be more rapid

than when D is small. The larger D is, the faster D can be expected to change.

This suggests that the rate of change of D will be proportional to D.

AD = kD

for some proportionality constant k.

Whenever the rate of change of a thing is proportional to that thing itself,

we are dealing with an exponential function. In the above example we expect an

exponential function of the form

D = Art

Where t is time and A and r are constants. Of course this equation will hold only

if we are correct in assuming that the rate of change of D is proportional to D.

9-2 Instructions for the Experiment

The previous assumptions can be investigated by actually conducting a cooling

experiment. Your teacher will assign you to small groups for this purpose. At the

beginning of the experiment your group should have the following equipment.

1. one styrofoam cup

2. one Celcius thermometer which can register temperatures up to 100° C.

3. a stand for securing the thermometer

4. pencil and paper

5. a watch with a second hand or a wall clock having a second hand within
sight

You are now ready to conduct the experiment. The following instructions should

be followed carefully.

1. Use the stand to mount the ther-

mometer so that the bulb is touching the

bottom of the styrofoam cup (see Figure 1).

2. Prepare a table like that on

Page 41 of the text. Fill in the time

column exactly as in that table. Leave

the other columns blank.

40-
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3. When you are convinced that the thermometer reading has stabilized, record

the temperature to the nearest half degree at the top of your table and label it

room temperature (see Page 41 of text).

4. Ask the teacher to place 20 ml of hot water in your styrofoam cup.

5. Watch the thermometer. When the temperature has reached its peak and just

starts to descend, note the time and record the temperature to the nearest half

degree to the right of time 0:0 in the column labeled T (°C).

6. Continue making temperature readings, always to the nearest half degree.

You will find it most efficient to have one person read the temperature, one to

keep track of the time and one to record the results. It is important to notice

that temperatures are recorded every half minute for the first 6 minutes and every

full minute after that.

9-3 Analysis of Results

The next step is the analysis of your experimental results. The purpose is to

check if the cooling function is exponential, and if so, to find the equation of

the function. We have hypothesized that

D = Ar t

Where A and r are constants. We can use the method of Section 8 to see if this re-

lationship holds. That is, we graph log D as a function of t and see if a straight

line results.

All the necessary calculations are done below on sample data collected by Bio-

med student Ann Chovie. You should work with your group in doing the same calcula-

tions on your own data.

As a first step Ann Chovie completed her data sheet, filling in the D and log

D columns (see page 41). Each value of D is obtained by subtracting room tempera-

ture (26° C in her case) from the recorded temperature T. Then the log table is

'ised to find log D.

Next Ann graphed log D as a function of t. The result is shown on Page 42.

You can scale you axes similarly, although minor changes might be necessary on the

vertical axis. As you can see, Ann's results do not quite lie on a straight line.

Therefore the cooling was not quite exponential. Your results will probably have

the same general appearance.

However, there is a linear function which approximates Ann's results well for

part of the time interval. You can see that the points on the graph lie quite close

to the line for the time interval from 3.5 minutes to 11 minutes. Try to find a

linear section for your own data and draw the approximating line.

Now we use the technique of Section 8. First we find the equation cf the

straight line. The log D intercept is 1.67. The slope can be calculated from any

two points on the line. Suppose we choose the points (0,1.67) and (12,1.12).

40
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m 1.12 - 1.67
12 - 0

.55
T2

= - .0458

Therefore the equation of the line is

log D = -.0458t + 1.67

This means that

This

D = 10
-.0458t + 1.67

D = (101'67)(10 -.0458 )t

D = 47(.9)
t

equation closely approximates Ann's results for the interval t = 3.5 to t = 11.

ROOM TEMPERATURE: 26° C

TIME
(min)

TEMPERATURE
(°C)

D log D

0.0 98 62 1.792

0.5 82 56 1.748

1.0 76 50 1.699

1.5 71.5 45.5 1.658

2.0 67.5 41.5 1.618

2.5 64.5 38.5 1.585

3.0 62 36 1.556

3.5 59.5 33.5 1.525

4.0 57 31 1.491

4.5 55.5 29.5 1.470

5.0 53.5 27.5 1.439

5.5 52 26 1.415

6.0 50.5 24.5 1.389

7.0 48 22 1.342

8.0 46 20 1.301

9.0 44 18 1.255

10.0 42 16 1.204

11.0 41 15 1.176

47 41



111

1111111100 NMI I
1111111111111111 II 111 I II

111111101111111110110101 gill
111111111111 'III. IIIIIIIIIIIIIIIIII:promill 11111 pm Illimpull nulinimillummill"

IIIIIIIIIINNIIIIIIIIIIINIIIIIIIIIImilimilimpull milimilimilliiiii
i idguillirlionsullinuOihtliiiimil argilmulibhII III III I II III IIIIIIIIIIII 1114 III I II 1 BIN _ ri gra mu arm

1 1 mil grilimillingligliolli lin II Him ' its

le 1 1111/1 pm role: I r li 1 w our 4 morsompelimilmorigl INprommi so r irmormiumr i 111111111010 II 14111 m I 011111 11 1111111111115111111,11m1 um

111111111111NIMMICHMUMPINUOMIONUIVilIMPROFP ITIMIIIMMUNIMEMMUF
111/ IIIII null I 111 loll 1 Ilmilltarilll or Imo rip mum roma r s rurrarsororroolmommemilloppr

102 Ili' 1111 ll Il 1111111111111101111111111iftwommullo111111111 IIIiIIIIIMMIIIIIIIIIIIIIIMMIO111111 1 il II 1 IIIII
1 inall I 011.10110001111111011111111 Wanflall110111111111111111.111PIN I

11012IIIIIIIIIIIIIMIIMIMIIMINIIIIIIIIIIIIIMMIOSITHIIIIIIIIMIMINUMNIII IIIMIIIIIIIMIUM
0 111041 III III 11110111111 imulmrimmillgollmiropillial millurrourrrillarrrilirri irrourrairarmari
ormillegrompou lormuriormoullorillgurrolliveriiiimil orilarririirliiiimosirrolum limpormomoilarilir

OUNINSNOWNIUMMUMNIONNIMINIMONOMMINCOLIMILIMENNAMOMMORM
101N1 RUFNIPINSTRUPRIONNIUMIINOWFMNOW 116/1/ Wallnpinli
IWOI

MU.
1111 JIM III 111111111111111111111111121111111 I PIO

MINIM Iiii10111111 6911111III 1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II II

1111191111111111 111111:1111119111111111111911111:11IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII

IIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 11111I!

10111121 gra I 11111111:4111 11110111111111 1111101011,1111111119111111111111191111111111101 111 WM

Nan US OppinquilpionsquiNtonquormommulmormumn mug
%nit yimpribinonileglippiunagumumpomomung IIii 1 II mom III 1111111100000 1 um 11111 rommormi rum Amur rir

....._

fill1 1111111 I 11111 PIN III 1 II I III is II 1

1 mi fill duo u 1 "IIIIII 1 1II
N i .1141 1 ill mil mo
1 Illiiiiiiiiiiih, 11111 il IIIIIIIIIIIIIII

iiii 1 1111 li lii lit:1m
imuppimpoppopuiviii iliqmp itpuripinmismultiri 1
toloNellurbidulif thiblinidbillim ilimiumuul li II111111111 I

IIIIIIIIIII 811111111 I pal plell I 111911111 I" 49 rill/ 111111111

Ii tobal...11111 ION ...40 MOIR . rakkr 1

i 1111111111111111
Ni

II "ll 11111110 III II 1 1

.1

. iiiiiiiiiiillpililli 1111 Ili.
. millidilliii.I. . ' 1 111111 11111 II



REVIEW PROBLEM SET 10:

Problems 1 3 refer to the function y = 5(2
t
).

1. Construct a table displaying the values of the function for values of t from

0 to 6.

2. Add a Ay column to the table and fill in the values.

3. For this function what is the value of k in the formula

Ay = ky ?

4. (Multiple Choice) A given function satisfies the equation Ay = ky. The func-

tion is probably

a. linear b. quadratic c. exponential

Write a growth equation Ay = ky for each of the following equations.

5. y = 18(11)t 6. y = -1
5

(-4 ) x
3

7. y = 130(.99)x

8. An exponential equation has base 7 and scaling constant 40. Write the equation

for the function (use variables y and t).
4

9. An exponential equation satisfies the following: the common ratio is -s- and

y = 50 when t = 0. Write the equation for the function.

10. An exponential satisfies the equation Ay = 21y and the scaling constant is 37.

Write the equation for the function.

11. A bacteria culture is increasing at the rate of 30% per hour. If the initial

population was 10 cells, write an equation relating the population y to elapsed time

t in hours.

12. Under the influence of an antibiotic, a bacteria population is decreasing by

20% per hour. If the initial population was 50 cells, write an equation relating

the population y to elapsed time t in hours.

13. Find the exponential function corresponding
t

to the table shown opposite. 0

14. A radioactive isotope has a half-life of 4

hours. If the initial amount is 64 grams, how

much will remain at the end of 20 hours?

15. The isotope
15

P
32 has a half-life of 14.3

days. How many days must pass for the amount

of the isotope to be reduced to 30% of its

original value?

y

1

3

1
1

2

2
3

4

3
9

8

16. A piece of charcoal is found to have an activity of 7 disintegrations per min-

ute per gram of carbon. What is the approximate age of the charcoal?

The drug Meperidine has a volume of distribution of 50 liters and a half-life of 3

hours. Problems 17 - 20 are sequential. They must be done in order. Round answers

to the nearest .1
mg

liter

43
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17. An initial dose of 60 mg is given. Compute the initial concentrati is

18. What will the concentration be 4 hours after the initial dose?

mg
liter.

19. Four hours after the initial dose another dose of 25 mg is What will

the new blood concentration be?

20. What will the concentration be 4 hours after the second dose?

21. An epidemic in a city of 10 5 people is predicted to obey the equation

H 5 1 t
= 10 (--)

10

where H = the number of healthy individuals, I = the number of infected individuals

and t is time in days. Complete the table below. Round all the numbers in the right

hand column so that there is only one non-zero digit.
I

t in H = R number of
days I infected persons

0

1

2

3

4

5

6

7

8

9

10

Convert each of the following equations to the form y = Art or y = Arx.

22.
3_3(

23. y = (.1) 2t

24. y = 10
.5t

25. y = 4 -2x

26. log y = 3t

27. log y = -2t - 1

28. log y = .6x + 2

29. log y = -.lx + 2.7

The following table shows the results of treating bacteria with an antibiotic

solution.

t (time in hours) 0 .5 1.5 2.7 6 10

y (living bacteria) 430 410 350 330 240 170

log y

30. Complete the log y row in the table.

31. a. Graph log y as a function of t and draw the best approximating line for

the resulting points.

b. Find the exponential equation relating y and t.
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SECTION 11: ANOTHER GRAPHING TECHNIQUE

11-1 Converting Another Type of Equation

point you have solved a number of problems requiring that you convert

an rr.cv.:i:.tion such as

into an exponential form.

log y = -3t + 2

Now you will see how to convert another type of equation

which arises often in applied problems. As an example, suppose the following equa-

tion is given

log y = 2 log t + 3

What will this equation become when the inverse function 10x is applied to both

sides? The steps are shown below.

10
1og y 102 log t + 3

y = (10
2 log t) (103)

y = 1000 (10
1og t

)

2

y 1000 t 2

The answer is not an exponential function but rather a simple quadratic. However,

the answer often is not so simple, as the following examples show.

EXAMPLE:

Convert the equation

SOLUTION:

EXAMPLE:

Convert

SOLUTION:

log y = -4 log x + .29

101°q = 10 4 log x + .29

y = (10
.29

)(10
-4 log x

)

y ", 1.95 (101°g x)-4

y 1.95 x-4

log y = -.43 log t 1.58

10 = 10
log y -.43 log t 1.58

y (10
-1.58 )(10

-.43 log t
)

1

(

10
1.58 )(10

log t
)

-.43

1 -.43
y t

11-2 Another Graphical Technique

Once the transformations of Section 11-1 are mastered it becomes possible to

determine relations between two variables by plotting the logarithms of both

variables.
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EXAMPLE:

The following table shows the relationship between weight W in kilograms and

body surface area S in square meters for several children. Find an equation for

the relationship between the two variables.

W 2 3 4 5 6 7 8 9 10

S .16 .21 .26 .30 .34 .38 .41 .45 .48

SOLUTION:

First we fill in rows for log W and log S.

log W .301 .477 .602 .699 .778 .845 .903 .954 1.00

W 2 3 4 5 6 7 8 9 10

S .16 .21 .26 .30 .34 .38 .41 .45 .48

log S -.796 -.678 -.585 -.523 -.469 -.420 -.387 -.347 -.319

Next we plot log S as a function of log W and draw the best line through the

resulting points. (The graph is shown on the following page.)

From the graph we find that the vertical intercept of the line is about -1

and the slope is about .68. This leads to the equation

log S = .68 log W + (-1)

We now follow the same technique as in the examples to put the equation in exponen-

tial form.
log W .68 -1S = (10
log

(10 )

(.1)W
.68

11-3 Which Technique Should Be Used for a Given Set of Data?

How do we know which graphical method to use on a given table of data? That
is, how do we know whether to find the log of one variable or the logs of both
variables? In an experimental situation a mathematician might have to try both
techniques (and several others) before he finds a satisfactory equation to describe
the data. In the problem set it will always be clear which method to use.

e53
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PROBLEM SET 11:

-

-4

Convert the following equations to the form y = Atb or y = Ax b
. Convert all powers

to their decimal equivalents.

1. log y = 2 log t + 2 2. log y = - log t + 3
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3. log y = 5 log x - 2

4. log y = -7 log x - 3

5. log y = 3.8 log x + 2

6. log y = -3 log x + .9

7. log y = 12.7 log t - .7

8. log y = -.32 log t + 1.47

The following graph shows the results of measuring pulse rate r and height h (in

meters) for several individuals. The log of r has been plotted against the log of

h and a best line drawn.
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9. Find the equation of the line. (Note that the vertical axis is not at the left

as usual, but rather in the middle.)

10. Find the corresponding exponential equation.
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The following table shows the course of a chemical reaction involving a peptone.

t (hours) .5 1 2 4 6

C (concentration) 47.5 35.5 28.0 21.5 18.0

11. Copy the table including a log t row and a log C row.

12. Graph log C as a function of log t and draw the best line through the result-

ing points.

13. Find the equation of your line.

14. Convert the equation.

The following table shows the relationship between sitting height S in meters

and weight W in kg. for four individuals.

S .87 .90 .92 .95

W 58 64 69 76.5

15. Copy the table including a log S row and a log W row.

16. Graph log W as a function of log .S and draw the best line through the result-

ing points.

17. Find the equation of the line.

18. Convert the equation.

SECTION 12: METABOLISM OF ANIMALS

12-1 Heart Rate and Body Mass

Small animals live at a fast pace. They have fast pulse rates, and short life-

spans. Also, they eat several times their weight in food every day and burn many

more calories for each kilogram of body weight than larger animals do.

Larger animals live at a slower pace. They have slower heart rates and respi-

ratory rates and longer lifespans and eat only a fraction of their weight in food

each day.

These observations are hardly precise. It is no surprise that mathematicians

have investigated such patterns with an eye to finding functional relationships.

To start, let's concentrate on pulse rate. Figure 1 is a graph showing the relation

between average body mass and average heart rate for various species of animals.

We have plotted the common logarithm of body mass on the x-axis and the common loga-

rithm of heart rate on the y-axis.

Field mice have an average mass of .015 kilogram and an average heart rate of

630 beats per minute. The logarithms are -1.82 and 2.80, so we plot the field

mouse on the graph at the point (-1.82,2.80).
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A small elephant has a mass of 2500 kilograms and an average heart rate of 35

beats per minute. Taking logarithms, we get 3.40 and 1.54; so we plot the elephant

at (3.40, 1.54). The elephant is farther to the right than the mouse because it

is more massive. It is lower on the graph than the mouse because it has a lower

heart rate.

The other species on the graph are plotted in the same way. The line which

most closely fits all these points is the line

y = -.25x + 2.30

That is,

log(heart rate) = -.25 log(mass) + 2.30

12-2 Daily Heat Production and Body Mass

Heart rate isn't the only way to measure how fast an animal lives. We can also

measure the amount of heat energy the animal produces in a day.

If we plot the average mass of various species against their average heat pro-

duction rates, we find that many species are very close to the line

log H = .75 log M + 1.20

where H is the heat production rate in kilocalories per day and M is the mass in

kilograms. (See Figure 2.)

This doesn't look much like the re-

lation between heart rate and body mass- -

this line slopes upward, while the heart

rate line slopes down. But suppose we

are interested in how much heat a species

produces per day for each kilogram of its

body mass. Then we can get a relation

which does look like the one between

heart rate and mass.

An animal's daily rate of heat pro-

duction per kilogram of mass is just M.

And we know that

log 0 = log H - log M

Combine this with

2 3
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log H .75 log M + 1.20
FIGURE 2

by substituting (.75 log M + 1.20) for (log H) in the first equation to get

log = (.75 log M + 1.20) - log M

= (.75 1) log M + 1.20

= -.25 log M + 1.20

So we see that an animal's daily heat production rate per kilogram of body mass is

related to its mass in much the same way that its heart rate is related to its mass.

D 3
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There is another property besides heart rate and heat production per kilogram

which measures how fast an animal lives. It is respiration rate (number of breaths
per minute). It turns out that respiration rate is also related to mass in much
the same way as pulse rate.

12-3 An Explanation

Why are all these properties related to body mass in this particular way? To

answer this question, we first notice that heart rate, respiration rate and daily

heat production per kilogram all depend on how quickly an animal loses body heat.

An animal that loses heat quickly has to produce heat quickly in order to keep
its body temperature up. This means a high heat production per kilogram. It also

means a high food intake (to supply the fuel) and a fast pulse and breathing rate

(to stoke the furnaces). And it means a short lifespan (the machinery wears out

quickly because it always runs at high speed).

An animal that loses heat slowly does not have to produce heat so quickly. It

will have a lower daily heat production per kilogram, a slower pulse, and so forth.

Now it turns out that smaller animals lose body heat more quickly than larger

animals. It's just a matter of geometry. An animal produces heat in its entire

body mass, but it can only lose heat through its body surfaces. So the ratio of
body surface area to body volume determines how much heat an animal produces and
loses in a given length of time.

This ratio is always larger for small

animals than for large ones. To see this,

think of an animal as a fur-covered box

of flesh (Figure 3). If the box measures

x centimeters on each side, the volume of

the box will be x 3 cubic centimeters, and

the surface area will be 6x 2 square cen-

timeters (x 2
square centimeters each for

the top, bottom and four sides).

So the surface-to-volume ratio is

surfac:e area = 6x 2
cm2

volume = x 3cm 3

FIGURE 3: A cube-shaped animal

surface area 6x
2

6

volume
x
3

That is, the surface-to-volume ratio is inversely proportional to the linear dimen-

sions (length, width, height) of the animal.

This is true even if the animal isn't cube-shaped. ne surface-to-volume ratio

will still be inversely proportional to the animal's size. The value of the propor-

tionality constant will depend on the animal's shape.

No matter what shape an animal has, if we make the animal twice as big in each

direction we will reduce its surface-to-volume ratio by half. If we make the ani-

mal half as big in each direction, the surface-to-volume ratio will double (see

Figure 4).
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Now we make some assumptions. We assume that heart rate, heat production per

kilogram and respiration rate are each proportional to heat loss. We also assume

that heat loss rate is proportional to the surface-to-volume ratio. Then we have

R = constant1

where R is heart rate, daily heat production per kilogram or respiration rate. This

is the same as
log R = -log x + another constant
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We want to turn this equation into the equation

log R = -.25 log M + some other constant

In order to do this, we will have to find a relation between body size and body mass,

that is, between x and M.

12-4 Body Mass and Heat Loss

It turns out that most animals have about the same density. That is, one cubic

centimeter of animal weighs about the same, no matter what the animal. This means

the animal's mass will be proportional to its volume.

But an animal's volume is proportional to the cube of its linear dimensions.

That is, the linear dimensions (lenght, width, height) are proportional to the cube

root of the mass. If we make the animal twice as big in each direction, it will

have eight times the volume and eight times the mass. If we make it half as big in

each direction, it will have only one-eighth the mass and volume.

This is easy to see for cube-shaped and sphere-shaped animals (Figure 3 and 4).

But it is also true for animal-shaped animals.

Combining all our relations and assumptions, we get the following.

The heart rate (or heat production per kilogram, respiratory

rate and so forth) of an animal should be inversely propor-

tional to the cube root of its mass.

In symbols, this is

R = K
1

M
7

where M is the mass, R is the heart rate (or heat production per kilogram, or what-
ever), and K is a proportionality constant. Another way to express this is

Klog R = log -y

M3
1

= log K - log M3

1= log K T log M

= -.33 log M + constant

12-5 Back to the Real World

In the real world, it turns out that the relation is closer to

log R = -.25 log M + constant

This isn't exactly what we expected, but then we made a lot of assumptions to simp-
lify the problem.

If you plot log R against log M for various species of animals, you will find
that they don't all fall on this line but are scatter,' -ound it. This is not sur-
prising. After all, some animals are more active tha. 'rs of the same mass. The
active animals have higher heart rates, respiratory rates, and so forth.
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And some animals have better heat insulation than others of the same mass.

They have thicker fur, or more fat. These animals lost less heat, and so should

have lower heart rates, heat production and so on.

PROBLEM SET 12:

1. Look at the graph in Figure 1. The points on the "best fit" line correspond to

species for which

log R = -.25 log M + 2.30

where R = average heart rate and M = average mass. Species on this line satisfy

an exponential relation
R = AM

for some numbers A and B. Use the equation for the line and facts about logarithms

to find the numbers A and B.

2. Elmo's hippo has a mass of 3500 kilograms. Assuming that hippos lie on the

"best fit" line, what is the hippo's average heart rate to the nearest beat per min-

ute? (Hint: Use the equation for the "best fit" line to find log R. Then find R.)

3. Elmo's average heart rate is 71 beats/minute. Assume that Elmo is on the "best

fit" line. What is Elmo's mass (to the nearest tenth of a kilogram)?

4: Norbert's mass is 70 kilograms. Assume that Norbert is on the "best fit" line.

What is his heart rate (to the nearest beat per minute)?

5. Assume that hippos lie on the line

log H - .75 log M + 1.20

a. How much heat does Elmo's hippo produce per day? Remember that the hippo's

mass is 3500 kilograms. Compute your answer to the nearest 100 kilocalories per day.

b. Use the answer to Part a to compute the hippo's daily heat production per

kilogram of body mass. (Compute to the nearest .1.)

Fat people are heavy for their height. Skinny people are light for their

height. So a person's height and weight together determine both his shape and his

size. This ought to be enough to determine his body surface area.

In fact, there is a formula which relates bod: surface area to body height and

mass. This formula is r

log S -0.69 + .40 log M + .70 log h

where S is the surface area in square meters, M is the body mass in kilograms, and

h is the height in meters.

6. Elmo's height is about l-,:-7 meters and his mass is about 62 kg. Compute his body

surface area, to the nearest .1 square meter.

7. Norbert's height is 2.0 meters and his mass is 70 kilograms. What is his body

surface area, to the nearest .1 square meter?

8. Convert the formula for body surface area to an exponential formula of the form

S E , M F h
G

for some numbers E, F and G.
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SECTION 13: INFINITE SERIES

13-1 Examples of Infinite Sums

So far we have worked frequently with tables of logarithmic and trigonometric

functions, but we have said nothing about how these tables are constructed. All

such

CUSS

tables are computed by the use of

the subject of infinite series.

You are familiar with adding up

of work in certain cases, but we can

infinite series. At this point we will dis-

a finite series of numbers. It may be a lot

be sure that there is'a definite answer even

if a thousand numbers are added. But what about adding an infinite series of num-

bers together? Is there ever any way of finding a definite answer in such a case?

In order to get a start on this question, suppose we look at the following two

infinite series.

0 + 0 + 0 + 0 + . . .

1 + 1 + 1 + 1 + . . .

The first is the sum of an infinite number of zeros. The sum is zero. This is true

because no matter how many zeros we add together, the answer is always zero.

The second series is a different matter. If we add the first two l's, we get

2, the first three l's give 3, the first one thousand its give 1000 and so on. The

further we go, the larger the sum. The sky is the limit. Clearly this infinite

series doesn't add up to any finite number. In summary, we can make sense out of

the sums of certain infinite series, but others do not add up to any particular

number.

As another example we find an
1

T'
write the decimal expansion for

infinite series that adds up to 1

3.

1

3

The decimal expansion is then written as an infinite sum as follows.

= .3
3

.33333...

+ .03 + .003 + .0003 + .00003 +

First we

13-2 A Word About Decimal Representations

In the above example we referred to the following equivalence.

1
T = .3333

The three dots indicate that the pattern of 3's continues indefinitely.

If the above equation is multiplies by 2, another familiar equivalance is ob-

tained.
2
T .6666

Suppose now that we multiply the first equation by 3.

Since
3

3

56

3

3
= .9999

= 1, you can see that there are two ways to write 1 in decimal form.

1.0000 ...

.9999 ...
6



In general, numbers with an infinite string of nines can be written in a simp-
ler form. For example, the number

.5999 ...

can be written more simply as .6.

13-3 Finding the Sum of an Infinite Series

We will now demonstrate a technique for finding the sum of an infinite series.

As an example consider the following series. The sum of the series is denoted by
S.

S = .9 + .09 + .009 + .0009 +

The behavior of this series can easily be studied by looking at the partial sums of
the series. The first partial sum S

1
is the first term, the partial sum S

2
is the

sum of the first two terms, and so on. The first three partial sums are shown below.

Si = .9 = .9

S2 = .9 + .09 = .99

S3 = .9 + .09 + .009 = .999

The pattern of the partial sums is char. If 10 terms of the series are added
the result will be a string of 10 nines, and so on. What if all the terms are
added? The results must be an infinite string of nines. That is

S = .999 ...

= 1

So the sum of the series is 1.

The following example is a little more complicated.

EXAMPLE:

Find the sum S, where

S = .45 + .045 + .0045 +

SOLUTION:

We start by writing down a few partial sums.

S
1

.45 = .45

S
2

.45 + .045 = .495

S
3

.45 + .C45 + .0045 = .4995

S
4

.45 + .045 + .0045 + .00045 = .49995

Each additional term added results in another 9 in the sum. If we add all of the
terms there will be an infinite number of nines following 4. Therefore

So the sum is .5 or 1

2.

S = .4999 ...
= .5
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13-4 Series Which Don't Have Nice Sums

So far it has always been possible to find the exact sum of each series. The

sums have turned out to be rational numbers like 1 or .5. However, many series

don't have simple sums, and we cannot find the sum exactly but only to a certain

number of decimal places. An example will give you an idea of how this works. Sup-

pose we want to find the following sum.

1 +
1

S = 1 + ,
2
6

3
6

1 + +

4
6

In order to tackle this problem, we construct a table. The left column con-

tains the terms of the series and the middle column, the decimal equivalent of each

term. The right hand column is a running total of the terms, or to put it another

way, it is a list of successive partial sums.

Look at the column of decimal equi-

valents. The values are getting small-

er. All the rest of the terms of the

series will have decimal equivalents

with at least 4 zeros after the deci-

mal point.

Now look at the column of partial

sums. The sums are growing, but not

very rapidly. The last 3 partial sums

all agree to 3 decimal places. We can

make an intelligent guess that

S = 1.017

to 3 decimal places.

What about the exact sum of the

series? Can you guess what it should

be? If so, you are a genius, because this question puzzled the very best mathema-

ticians for several decades. The answer was finally published in 1748 by the great

mathematician Euler (pronounced "oiler"). The answer is

TERM
DECIMAL

EQUIVALENT SUM

1 1.000000 1.000000

1

2
6

.015625 1.015625

1

3
6

.001372 1.016997

1

---6.
4

.000244 1.017241

1

5
6

.000064 1.017305

16 .000021 1.017326

6

TT3 1.017326316

se 6,5



1

3

2

3

1

6

5

6

= .333 ...

.666 ...

= .1666 ...

= .8333 ...

1 = .090909 .

11

2 = .181818 .

11

3 = .272727 .

11

TABLE 13

Decimal Equivalents for Some Fractions
(to be used in Problem Set 13)

1

8

3

8

5

8

7

8

= .125

= .375

= .625

= .875

4

11

5

11

.363636

.454545

.545454

1 = .111

2 = .222

4 = .444

5

9

7

9

8

9

.555

.777

.888

11 11
10= .636363 = .909090 ...

8
= .727272

11

9 = .818181
11

PROBLEM SET 13:

In solving t' 'ollowing problems you will often need to refer to TABLE 13 above.
It will help decide what numbers are represented by certain decimal expressions.

1. a. Write down the first four partial sums for the series

S = .6 + .06 + .006

b. What must the sum S be? Use TABLE 13 to express S as a fraction.

2. a. Write down the first three partial sums for the series

S = .27 + .0027 + .000027 +

b. What must the sum be?

For Problems 3 through 5, refer to the following series.

S = .18 + .018 + .0018 + .00018 + .

3. Write down the first four partial sums.

4. As each new term is added, the effect is to add another (?) to the deci-

mal expansion.

5. What must the sum S be? Leave it as a decimal.

In Problems 6 through 11 write the sum S as a fraction or mixed number. You will

need to refer often to TABLE 13.

6. S = .36 + .036 + .0036 + .

7. S = .75 + .075 + .0075 + .

8. S = 2.2 + .22 + .022 + .

9. S = 3.2 + .32 + .032 +

10. S = 11.25 + .1125 + .001125 +

11. S = 2.34 + .0234 + .000234 + .
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12. Suppose we want to find the following sum.

1 1
- 1 1

5 10
S = 1 - -T + --T

15
+

20

Notice that there are negative terms in this sum. The table below shows the

decimal equivalents of the first few terms.

APPROXIMATE
TERM DECIMAL EQUIVALENT SUM

1 1.00000

1
- .00800

1

10
3

.00100

1

15 3
.00030

1

20 3
.00012

- .00006

a. Find the numbers that go in the sum column.

b. Based on the partial sums, what should S be, rounded to three decimal

places?

SECTION 14: THE SINE AND COSINE FUNCTIONS

14-1 Review of Trigonometric Functions

In Unit IV of Biomedical Mathematics you studied the trigonometric funcitons

sine and cosine. In this section you will see how these functions are related to

infinite series. Let us recall how the sine and cosine were defined. Both are
functions of angles. Degrees are the most familiar measure of angles. A right

angle has 90°, a straight angle, 180°, and a full circle, 361'.

Notice that these angles all show a counterclockwise rotation. Angles which arise

from a clockwise rotation are considered to be negative.

1 -
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Another important angle measure is the radian. 180° is equivalent to 7 radians.

Therefore 360° is equivalent to 27 radians and so on. The following relationships

can be used to convert degrees to radians and vice versa.

angle in radians
IT radians x (angle degrees)

180 degrees

degrees
angle in degrees

180 deg x (angle in radians)
IT radians

For example, how many degrees are there in 1 radian? In order to find out, the

second formula can be used.

decrees
angle in degrees 180 x (1 radian)

IT radians

!-= 57.3°

Recall how the trigonometric functions sine and cosine are defined. Suppose

we want the values of sine and cosine for an angle x. We begin on the positive side

of the horizontal axis and construct the angle x. Then we draw a vector of length

1 in the direction x. The horizontal coordinate of the vector's tip is cos x and

the vertical coordinate is sin x.

(cos x, SIN x)

Stns

VERTICAL AXIS

1-10t2 IZONTAL AXIS

COS

The graph of the sine function is shown on the following page. You worked

with graphs like this in the unit on sound. Notice that the angles are expressed

in radians.
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As you can see, the pattern of the sine curve for negative angles is just a

continuation of the pattern for positive angles. This pattern continues indefi-

nitely in both the positive and negative directions.

14-2 Polynomial Functions and the Sine Function

In the case of certain functions it is quite easy to find y when x is given.

This is true of a linear function such as

y = 3x + 2

or of a quadratic function suc.11 as the following.

2 1 1
y = 8x - 3x +

120

When x is given you need only substitute, find the indicated powers and it all

comes down to a multiplication and addition problem.

These last two functions are examples of polynomial functions with integi

exponents, that is, functions which are formed by adding integral powers of x, each

multiplied by some real number. The largest power of x appearing is called the

degree of the polynomial. For example,

y = 1 - 8x
2 + 29x 10 - 76x

122

is a polynomial function of degree 122.

The functions sine and cosine present a constrast to polynomial functions.

They are hard to evaluate. If you were asked to figure out sin 86° you would prob-

ably be hard pressed to do it. You are accustomed to referring to a table like

Table 14 (located at the end of this section). But how are the values in the table

computed?
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In order to answer this question we will indulge in a little wishful thinking.

If only the sine function were a polynomial it would be easy to evaluate. Perhaps

the sine function is in fact a polynomial and we just don't know it.

Could the sine function be a linear function? No, because the graph of the

sine is not a straight line. Since the graph of the sine is not a parabola, the

sine cannot be a quadratic function either. Continuing along these lines, mathe-

maticians have shown that no matter how large an integer n we choose, the sine func-

tion cannot be a polynomial of degree n.

In the end, however, this line of attack works. The sine is not a polynomial

of finite degree, but it is a polynomial of infinite degree.

x
3

+
5! 7!

x 5
x
7

+
9!

x
9

3!
sin x = x -1- -- -1-

As you can see, only the odd powers of x appear. The signs of the terms alternate

between positive and negative. The expressions in the denominations are factorials

like the ones you worked with in the study of permutations and combinations. It is

important to note at the start that the equation is true only if x is expressed in

radian measure.

By now you have worked with infinite sums, but they were always sums of num-

bers rather than powers of x. In this case, the partial sums will be the polyno-
x3

mials x, x 73-T and so on. In order to see how the partial sum polynomials approx-

imate sin x, the following graphs are included. Each graph shows sin x and the

polynomial together. The graphs were drawn by a computer connected with a plotting

device.

As more terms are added, each polynomial follows the sine graph a little far-

ther before it "takes off." For example, on Graph D, the polynomial coincides al-

most exactly with sin x in the interval to 7. On the last graph, Graph K, the

polynomial and sin x agree closely across almost all of the domain shown. You should

keep in mind that even where the graphs appear to coincide, it is not usually be-

cause the functions are identical. Instead it is because the difference between the

functions is too small to show up on the graph.

A

--21r

7 0

rr

.'....

Y = x

Tr 3 Tr
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Y = x
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PROBLEM SET 14:

x

Refer to Graphs A through K in the following problems.

1. The graph of the third partial sum (see Graph C) agrees closely with sin x for
x in the interval

7 7
7a. - -2 to b. -7 to 7 c. -27 to 27

2. The seventh partial sum (Graph G) coincides closely with sin x for x in the
interval (largest interval that applies)

7a. -
7

2
to - b. -7 to 7 37 37c. - --

2 2
d. -27 to 27

3. Which is the first partial sum that appears to coincide with sin x over the
entire interval -27 to 2n?

4. The eleventh partial sum (Graph K) appears to coincide with sin x over the
interval (?)

x35. Look at Graph B. You can see that sin x = x - -TT for x between - T and T.
This fact can be used to get an approximate value for the sine of .611 radian.

x 3
a. Compute x - when x = .611. [(.611)

3
= .228]

b. What value appears in Table 14 for the sine of .611 radian?
c. What is the difference between the answers to Parts a and b?
d. .611 radians corresponds to an angle of (?) degrees.

6. The infinite series for the sine can easily be used to find the sine of 1 rad-
ian. We simply substitute 1 for x.

1 3
1
5

1
7

sin 1 = 1 - TT + 5, TT +

1 1 1

1 3! 5! 7!
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a. Use the series to compute'sin 1.

Express your answer to three decimal

places. The table shown opposite will

be useful.

b. Estimate the sine of 1 radian

using Table 14.

c. What is the difference between

the answers in Parts a and b?

7. There is also an infinite polynomial

for the cosine function.

N
1

N!

1

2

3

4

5

6

7

x
2

x
6!

4
x

!

6

4
cos x = 1 - + - +

1.0000

.5000

.1667

.0417

.0083

.0014

.0002

a. Use the series to compute the cosine of 1 radian. (The table of Problem

6 contains the values you need.) Express your answer to three decimal places.

b. Use Table 14 to estimate the cosine of 1 radian.

c. What is the difference between the answers to Parts a and b?

You have now seen that the sine and cosine functions are infinite polynomials.

It is easy to find the derivative of a polynomial. This fact can be used to find

the derivatives of the sine and cosine. The following problems show how this is

done.

3x x
2 2

8. Show that --- = 5x
4

x
4

3! 2! 9. Show that
5! 4!

10. The infinite series for sine and cosine are as follows.

3 5
7 2 4 6x x xsin x = x - + - + x x xcos x = 1 - fT + TT +3! 5! 7!

in x)Show that d(sdx
cos x by finding the derivative of the polynomial for sin x.

os x)11. Show that d(cdx
sin x.

12. In the unit on sound you worked with functions of the form y = sin lc:. It is

easy to find an infinite polynomial for sin kx. We just substitute kx for x in the

polynomial for sin x.
3 5 7

(kx) (kx)5 (kx)sin kx = kx - TT-- +
5!

+
7!

k
3
x
3

k 5
x 5

k
7
x
7

= kx - -TT- + -7T-

Find the infinite polynomial for cos kx.

13. Take the derivative of the sin kx polynomial and use the distributive law to

show that

68
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TABLE OF TRIGONOMETRIC FUNCTIONS

TABLE 14

Degrees Radians Cosine Sine Tangent Degrees Radians Cosine Sine Tangent

0 .000 1.000 0.000 0.000
1 .017 1.000 .018 .018 4 .803 .695 .719 1.036
2 .035 0.999 .035 .035 47 .820 .682 .731 1.072
3 .052 .999 .052 .052 48 .838 .669 .743 1.111
4 .070 .998 .070 .070 49 .855 .656 .755 1.150
5 .087 .996 .087 .087 50 .873 .643 .766 1.192

6 .105 .995 .105 .105 51 .890 .629 .777 1.235
7 .122 .993 .122 .123 52 .908 .616 .788 1.280
8 .140 .990 .139 .141 53 .925 .602 .799 1.327
9 .157 .988 .156 .158 54 .942 .588 .809 1.376
10 .175 .985 .174 .176 55 .960 .574 .819 1.428

11 .192 .982 .191 .194 56 .977 .559 .829 1.483
12 .209 .978 .208 .213 57 .995 .545 .839 1.540
13 .227 .974 .225 .231 58 1.012 .530 .848 1.600
14 .244 .970 ,242 .249 59 1.030 .515 .857 1.664
15 .262 .966 .259 .268 60 1.047 .500 .866 1.732

16 .279 .961 .276 .287 61 1.065 .485 .875 1.804
17 .297 .956 .292 .306 62 1.082 .470 .883 1.881
18 .314 .951 .309 .325 63 1.100 .454 .891 1.963
19 .332 .946 .326 .344 64 1.117 .438 .899 2.050
20 .349 .940 .342 .364 65 1.134 .423 .906 2.145

21 .367 .934 .358 .384 66 1.152 .407 .914 2.246
22 .384 .927 .375 .404 67 1.169 .391 .921 2.356
23 .401 .921 .391 .425 68 1.187 .375 .927 2.475
24 .419 .914 .407 .445 69 1.204 .358 .934 2.605
25 .436 .906 .423 .466 70 1.222 .342 .940 2.747

26 .454 .899 .438 .488 71 1.239 .326 .946 2.904
27 .471 .891 .454 .510 72 1.257 .309 .951 3.078
28 .489 .883 .470 .532 73 1.274 .292 .956 3.271
29 .506 .875 .485 .554 74 1.292 .276 .961 3.487
30 .524 .866 .500 .577 75 1.309 .259 .966 3.732

31 .541 .856 .515 .601 76 1.326 .242 .970 4.011
32 .559 .848 .530 .625 77 1.344 .225 .974 4.331
33 .576 .839 .545 .649 78 1.361 .208 .978 4.705
34 .593 .829 .559 .675 79 1 '9 .191 .982 5.145
35 .611 .819 .574 .700 80 1..'6 .174 .985 5.671

36 .628 .809 .588 .727 81 1.414 .156 .988 6.314
37 .646 .799 .602 .754 82 1.431 .139 .990 7.115
38 .663 .788 .616 .781 83 1.449 .122 .993 8.144
39 .681 .777 .629 .810 84 1.466 .105 .995 9.514
40 .698 .766 .643 .839 85 1.484 .087 .996 11.43

41 .716 .755 .656 .369 86 1.501 .070 .998 14.30
42 .733 .743 .669 .900 87 1.518 .052 .999 19.08
43 .751 .731 .682 .933 88 1.536 .035 .999 28.64
44 .768 .719 .695 .966 89 1.553 .018 1.000 57.29
45 .785 .707 .707 1.000 90 1.571 .000 1.000 unde-

fined
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SECTION 15: EULER'S NUMBER

15-1 Infinite Series for Exponential Functions

In the last section we pointed out that tables of trigonometric functions are

calculated by means of infinite degree polynomials, called infinite series. The

specific series for sine and cosine were discussed. In this section we will ex-

plore the infinite series that are used to compute the values of exponential func-
tions. Let us begin with the following three series, which can be obtained through
methods of calculus.

(1.609)2x2 (1.609)
3
x
3

(1.605x = 1 + 1.609x + + + 9)
4
x
4

+
2! 3! 4!

3x + 1.099x + (1.099)2x2
+

(1.0939)
3x 3

+
(1.099) 4

x
4

+
2! ! 4!

x (.693) 2
x
2

(.693)
3
x
3 (.693) 4

x
4

2 = 1 + .693x +
2!

+
3!

+
4!

+

In some respects, these series resemble those for the sine and cosine. The

familiar factorials 1!, 2!, etc. appear in the denominators. However these series

are not as simple because of the messy constants in each term.

Fortunately the constants provide a clue to a simpler series. Notice that the

constants increase as the base gets larger and that the constant for 2x is less

than 'ne while the constant for 3x is greater than one. Perhaps there is a number

e between 2 and 3 such that the constant for ex is exactly one. In fact, there is

such a number, and we can write.
2 3

x x x x
4 5

ex = 1 +
1! 2! 3! 4! 5!

This series is much simpler than the others. Therefore it is much easier to work

with.

15-2 e for Euler

Before we determine the numerical value of the number e, a few words about its

,origin are in order. The number e is called Euler's (pronounced "oilers") number.

This may be the first time that you have ever heard of Euler's number, but if you

decide to continue your mathematical education beyond high school you will hear much

more about Euler himself. He was a giant in the history of the development of math-

ematics.

Euler came on the scene early in the development of calculus. He used the

then new tools of the calculus to greatly expand mathematical knowledge. He was

by far the most productive of all mathematicians A group in his native Switzerland

is putting together a complete set of his works. It is not finished yet, but they

figure that it will run to 75 volumes of about 600 pages each, or about 45,000 pages.

This works out to a production for Euler of roughly 3 printed pages of mathematics

per day over a span of roughly 50 years! Furthermore, it was all_ hard, all bril-

liant and almost without error. In the case of Euler a high rate of production

did not imply a sacrifice in quality.
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Surely this man must have been some freakish weirdo. One suspects that Euler

would have had some of the personality quirks that today people associate with mad

scientists. For example, an introverted personality and a demented laugh. Not so.

Euler was very much a family man. During much of his productive life he supported

a household that numbered 13. This number included parents, children, grandchildren,

etc. He was reportedly able to develop new mathematics with one child in his lap

and another one tugging on his arm.

In his later years Euler became blind. This would seem to spell the end of a

mathematician's productive life, but not so for Euler. He learned to dictate math-

ematics. rate of production barely faltered. In fact, he continued to develop

new mathematics for 12 years while completely blind. Only death was able to stop

Euler's production of mathematics. He died in 1783.

15-3 The Value of e

In order to compute the value of e, we substitute x = 1 in the series for ex.

Since e 1 = e, this will give us the valu of e.

1 1 1 1 1e = 1 + IT + + + + .

It is impossible to evaluate e exactly by calculating a finite number of terms.

However, it is always possible to calculate e as exactly as needed for any situation.

This is because -r.LT gets very small very quickly as n increases. For example,

The first ten digits of e are

1 1.2 x 10
-82

60!

e 2.718281828

This may look like a repeating decimal, but it isn't. The ...1828... pattern stops

after the last 8. As we have pointed out, in the series for ex there are no clumsy,

hard to remember, constants hanging around. However, the base e is not as "nice"

as we might have hoped for. It is much more difficult to square 2.718281828...

than it is to square 2, for example. Just as in most other t!,ings, we can't always

get everything we want. In this case, we cannot have both an aesthetically pleas-

ing series and a nice, easy to work with base.

15-4 Does the Series for ex Have the Property (ex)(ev) = e
x+v

?

The question that we wish to deal with at this point is how an infinite poly-

nomial can behave like an exponential function. Remember that the product of two

powers of r is simply r raised to the sum of powers. In general

x v x+v
r -r = r

The polynomial series for ex should also have this property. Specifically,

e
x
-e

v = e
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In terms of the series, the question is, does

2 3 2

+ x + ST + ST + ...)(1 + v + v
+ ...) =

2 3
(x + v) (x + v)1 + (x + v) +

2! 3!

The truth of this equation is not immediately obvious. The demonstration that

it is true requires only a knowledge of the distributive law. Recall that

a(b + c) = ab + ac

We can.apply the distributive law to the problem of multiplying two infinite poly-

nomials as follows. We start out by ignoring the fact that ex is an infinite poly-

nomial. This simple-minded approach leads to the following development.

v 2(ex)(ev) ex
71

2v
= e

x
(1) + ex (v) + ex (--) +

2!

Next we use the fact that ex is actually an infinite polynomial and cleverly arrange

the terms in such a way that they may be easily summed.

2e
x (1 + v + + ...) Column #1 Column #2 Column #3 Column #4

2!

e
x

1

vex = v1

v
2

=

x2 x3
TT 3!

vx vx 2

2!

v
!

2
, v 2

2 2!
x + .

v 1
2

e
x (1 + v + 7T + ...) = 1 + (x + v) + (x 2 + 2xv + v2) +

2

2exev
(x + v) (x

2+

v)
!

Notice that the sum of all of the terms on the left is simply the product
2

ex(1
x,

2v !

l + v + + ...)

or equivalently

(ex) (ev)

On the right we have arranged the terms so that the sum of each column will be a

term in the polynomial for e (x + v)
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PROBLEM SET 15:

1. a. Graph y = ex for the table function below.

b. Connect the points with a smooth curve.

x y = ex y = ex

-5

4

- 3

-2

-1

-.5

0

.5

.007 1.0 2.7

.018 1.2 3.3

.049 1.4 4.0

.14 1.5 4.5

.37 1.6 5.0

.60 1.8 6.0

1.0 2.0 7.4

1.6 2.2 9.0

2.4 11.0

2.5 12.2

2.6 13.5

2.8 16.4

3.0 20.0

c. Sketch in the smooth-curve graphs of y = 2x and

(3
2.5

15.6)

2. Column #4 in Section 15-4 adds up to

x
3 x

2
v
2

v 3
+ vyr + x-- + --

3! 2! 3!

Show that this polynomial is equivalent to

(x + v)3
3!

3. Column #5 adds up to
x
4

+x3v x
2
v
2

+ xv3 v
4

4! 3! 2!2! 3! TT

Show that this polynomial is equivalent to

(x + v)
4

4!

Y = 3
x on the same grid.

Use the information in Problem 1 and the relation (ex)(ev) = ex+v in Problems 4

through 10. Keep in mind that the numbers in the table are only approximations.

Therefore your calculations will yield numbers that are only approximately equal.

EXAMPLE:

Does e(2)e(-1) = e (2-1)

SOLUTION:

= e
1
?

e 2 = 7.4

e
-1

= .37
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Does (7.4)(.37) = 2.718281828 ?

2.738 = 2.718281828..

4. Does (e1.2 )(e
1.8

) = e3
?

5. Does (e 1.5 )(e
-.5

) = e1 ?

2.5 -.5
6. Does (e )(e

0
) = P 2

?

7 . Does ( e .
5

) ( e .
5

) = e
1?

11. Use the information in the table

shown opposite and the equation

2 3 v4
ex = 1 + x + + I- + +

2! 3! 4!

to calculate e to 5 decimal places.

12. a. Use the information in Problem

11 to calculate e .1 to 7 decimal places.

b. What is 10 ?

1
13. Calculate e several decimal

places. Neglect the 7! and 8! terms.

d(ex) x

8.

9.

10.

Does

Does

Does

(

e1.4)(e1.6) e3.?

(e
1.8

)(e
2.2

)(e
-5

)

(e
2.4

)(e
2.6

)(e
-4

)

=

=

e
-1

?

1
e ?

n
1

n!

1 1.0

2 .5

3 .16667

4 .04167

5 .00833

6 .00139

7 .00020

8 .00002

14. Show that e by finding the derivative of the infinite polynomial for

e
x.

15. a.

for ex .

Find an infinite series for ekx by substituting kx for x in the polynomial

d(dxkx
b.

kx
b. Find the derivative of the series in part a to show that ke .

SECTION 16: A COMPLEX NOTION

16-1 The Meaning of eie

We are going to do something that may seem mysterious. We are going to substi-

tute the expression ie for x in the ...e.Les for ex. For once we will not tell you

'what to expect. We want you to follow the line of reasoning that we present and

perhaps be surprised at the result.

Recall that

and

i =

.2
1 = -1

and so forth. You last saw "i" back in Unit III on quadratic equations. We created

"i" for what probably seemed to be an artificial reason. We created it so that we

could say that all quadratic equations had solutions. From the point of view of a
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mathematician this is a perfectly acceptable reason. In this section we will once

again involve ourselves in ideas that mainly mathematicians find interesting.

Recall the series for ex.
2

x
3

x
4

e
x = 1 + x + x

+ + TT +

Now we substitute i8

e

Remember that

for x.

ie
= I

= 1

i2 =

+ (ie)

+ ie

-1,

+
(ie)

2

+ (l3e)
. 3

+ (ie)
4

+

2

2!

2.2' ' 3. 3

+ i36

!

;4.4

+

4!

+

(i2)

+
2!

i3 =

!

(-1) i,

4!

i4

Consequently,

=(-1)
2

= 1

e 18 = 1 + ie
2

ie
3

e
4

+,
2! 3! 4!

Notice that all odd powers of e will have an i factor with them. We can factor i

out of these terms to get

e
2

e
4

e
6

e = 1 +
2 4! 6!

+ i(6
e
3

e
5

3! 5!

You should recognize both of these series. The one on the top is the series for

cose while the one on the bottom is the series for sine. These facts lead us to the

rather surprising equation

e
ie

= cose + i sine

It is quite possible to be convinced that this equation is true and yet have abso-

lutely no intuitive feeling for its meaning. What sense is there in a formula that

relates a rather special exponential function to the trigonometric funcitons sine

and cosine through the mysterious services of the elusive "i"? The first step in

making sense of e16 will be to draw a picture of it.

16-2 A Graphical Interpretation of eie

In one sense eie is an old function. It is an old function because it is basi-

cally just an exponential funciton. Since it is an exponential function we expect

it to follow the exponential properties that we have been repeating and investigating

these past few sections.

In fact, we will find that ex behaves like an exponential function even when x

is a complex number. You might think that this settles the issue and that we can

move on to new functions. If so, you would be wrong, because in another sense e 10

is a new function. It is a new function because e18 has some new properties in addi-

tion to the exponential laws that we have developed previously.
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Since e i6 is a new function, one of the first things to do is to graph it. The

first step in this direction is to notice that e
i6 is a complex number. In fact,

el = cos6 sine

The real part or horizontal coordinate

is coso. The imaginary part or vertical

coordinate is sine. These observations

lead to the opposite graph. Notice that

for any value of 0, ei8 will be a point

located on a circle of radius one cen-

tered at the origin. We ;snow that the

circle will have radius one because the

distance from the c- -,?in will be given

by the Pythagorear. Theorem. Specifically,

and we know that

distance = cos -5 + sin 2e

ccs2e .

+
2

= 1

for all values of a: therefore

distance = iT

= 1

16-3 Some Calculations with e i6

IMAGIMARY AXI

CO'se ± iSIN.16)
OR ggie

AL AX!.

Now we will look into the matter of multiplying two complex numbers written in

the form e . For example,

(e
ia

)(e
ia

) = ?

Since e
if)

is an exponential function we expect it to follow the (ex)(en = e XII,
rule;

therefore,

(eia)(e") = ell+ "

= ei(a + 3)

We can graphically represent this cperation as follows.
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16-4 A Numerical Example

Remember the formulas

cos x = 1
x2 x4
2! 4!

x
3 x 5

sin x = x -
3! 5!

required that x be stated in radians.

EXAMPLE:

What is the complex number represented by e
4
?

SOLUTION:

7
We apply the relation eie = cose + i sine and substitute

4
= - to obtain

in
7

e
4 = cos-

4
+ i sin

4

4
Recall that

4
- radians is equivalent to 450; there Jre

4
e = cos 45° + i sin 45°

Graphically represented, this is

In summary then,

PROBLEM SET 16:

.7
1- -
4 2, .//

e = 7- + 17-

7r -I- i 511%.1

1. Show that e
ie = cose + i sine by substituting i9 for x in the power series for ex .

Convert the following angles to radian measure. Use the conversion factor
7 radians

180°

2. 90° 4. 45°

3. 180' 5. 360°

6. 60°
0

7. 135



Refresh your memory about trigonometric functions by finding the values of the

following functions.

8. cos0 = ? 10.

9. sin0 = ? 11.

Graph the complex

cos 7 = ? 12.

sin .7 = ? 13.

sin IT = ? 14. cos = ? 16. sin

cos TT = ? 15. sin = ? 17. sin

TT =
6

TT =
3

numbers represented by the following imaginary powers of e.

.n .5n .3n14 17 17 iE
3 6 l 6

18. e 19. e 20. e 21. e 22. e 23. e

Represent the following multiplications graphically.

.n .3n

25. (e

iT
4

)

Write the complex numbers represented by the imaginary powers of e given below.

.EiE 3n
1---4-

4 2 in
e =26. e

i

= 27. e = 28. 29. e =

i2 L

*30. Raise e to the ith power to get an expression for i1. Describe anything

notable about the resulting expression.

SECTION 17: THE POLAR Frdvi OF A COMPLEX NUMBER

17-1 Finding the Polar Form

In the preceding section we saw that the graph of e ie
was a circle of radius

one in the complex plane. Here we will see that we can represent any point in the

complex plane by an expression of the form reie where r is the distance of the point

from the origin.

EXAMPLE:

Write the number 1 + i in the form re .

SOLUTION:

A graph of 1 + i will tell us much.

The Pythagoream Theorem will tell us the

distance from the origin.

r = /12 + 12

r =
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Our earlier experience with trigonometry tells us that the angle 0 is 45°, or

radians. Putting it all together, we get
TT

1 + i = r2 e

It should be clear that a similar procedure could be used to convert any _omplex num-

ber in the form a + bi into the polar form re
i0

17-2 Multiplication and Division of Complex Numbers Revisited

When two complex numbers are stated in polar form, the operations of multipli-

cation and division are greatly simplified. The following numerical examples illu-

strate the new procedures.

MULTIPLICATION EXAMPLE:

i
3e )

SOLUTION:

We use the commutaLive principle to rearrange the factors.

(3e1) (5e 2i) = 15 ( ) e 2

Now look at the produc of the two exponential terms. We can apply the property

(nx)(ry ek+y

to obtain

(3e1)( e'"'; = 15e
(i+2i)

= 1.5e3i

in other words, the pro .ct c,f ,3e1) (5F.'') will be 15 units ,I.way froAl the origin and

the angle 0 will 114. rElians.

A graph of this p:-otqem will show what 2.q happer;.nc pci t of view.

Notice that the length of the proclut (15) is the product of the lengths of the fac-

tors (3.5), while the angle of the product (3 radians) is the sum of the angles of

the factors (1 radian plus 2 radians). This pattern is true in general for multi-

plication.
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DIVISICN EXAMPLE:

12e1IT

4n

3e

First of all we call cancel a factor of three from both the denominator and

numerator.

Next we apply the ex =

4

V2e1n 4e
in

4 1-. IT

e 3

1
to get

-x -in
e = 4(e in

)(e
3

)

Now w use the rule (ex)(eY) = e x+1,
to go on to

n
(in

= 4e

3
-)

= 4e

= 4e

.213n

Again we will. refer to a graph of this procedure to she' the general pattern in
division.

We can see that the length of the quotient (4) is the quotient of the numerator ,12)
2ndivided by--the denominator (3), while the angle of the quotient (-T radians) is the

angle of the numerator (1 radians) minus the angle of the denominator (i radians).

This is the general pattern for division.

Compare these procedures for multiplying and dividing complex numbers to the

ones we first used (Section 21, Unit III). When we were developing ari.Ihmetic pro-

cedures for complex numbers back then, we were able to draw a parallel between vec-

tors and complex numbers for the operations of addition and subtraction. However,

the pattern for complex multiplication was not obvious in the procedure that we used.

For example, consider the product

(1+i)(2+2i) = 2 + 2i + 2i + 2i2

= 4i

The pattern is unintuitive when it's presented in this form. It is not obvious that

the lengths of the two complex numbers are being multiplied and the angles 'peing

added. 8 7



PROBLEM SET

Convert the following complex numbers to polar form.

1. -1 + i 2. -1 - i 3. 1 + 4. -1 +

5. i 6. -1 7. -VT + i

Use a protractor and a ruler to sketch the following complex multiplications and

divisions. Show the value of the product on the sketch.
.77

J-` Ti. n 5 1- J. 1

i -2 11- i. -3 ivr 6 6
16e 20e

8. (4e )(3e 4) 9. (6e )(3e ) 10. 11.
.57
1 i-

8e 8e 5e
3

Perform the f llowing indicated operations.

i4
1

i
77

4
12. (7e ) (Te )

13. (6e
80i

)(.5e
75i

) =

2 .7i 3 -.4i
15. (.ye ) (e-e ) =

16. (.8e
-.4i

)(.12e
.6i

) =

14. (14e .05i )(10e.78i) = 17.
27e

6i

9e
7i

18.

19.

REVIEW PROBLEM SET 18:

Convert the following equations ;qo?ve

1. log y = 3 loq x + 2 y = -1.8 log t + 1.94

2. log y = .52 log t + .58 4. lo? y = -3.5 log x .02

49e
16i

14e
-7i

39e
21i

13e
471

6e
-19i

18e
-21i

In each of Problems 5 through 7 find:

a. tie equation of the line.

b. the converted equation (solve for y as in Problems 1 through 4).

5.

L.) icy t

6.

88
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8. The relationship between the mass M of an anial in kg and the heart rate :; in

beats per minute is
log R = -.25 log M + 2.3

What heart rate would you predict for Hercules, a dog of ;.g? Round to tile near-

est whole heartbeat.

Find the sum of each of the following infinite series.

9. 8.1 + .81 + .081 + .0081 + .

10. .63 + .063 + .0063

11. .27 + .027 + .0027 +

12. .333 + .0333 + .00333 + .000333 +

13. 5.22 + .522 f .0522 + .00522 +

Recall the infinite series for the sine function

3 5 7

sin x= x- x x x
+ - +

3! 5! 7!

Here, x is given in radians.

14. Use the first two terms of the series to get an approximate value for Fin x,

for each of the following values of x.

a. x = .1 b. x = .01 c. x = .001

15. How do the approximate values of sin x in Problem 14 compare with the true

values? Use the table on the following page.
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Table of sines for small values of x

x(radians)

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100

Sin x

0.00000 00000
0.00099 99998
0.00199 99987
0.00299 99935
0.00399 99893
0.00499 99792
0.00599 99640
0.00699 99428
0.00799 99147
0.00899 98785

0.00999 98333
0.01999 86667
0.02999 55002
0.03998 93342
0.04997 91693
0.05996 40065
0.06994 28473
0.07991 46940
0.08987 85492
0.09983 34166

Find the complex numbers represented by the following imaginary powers of e.

.5
7 1

.3 .

1
5
-11

.71-677
16. e 18. a 20. e 22. 2e

4 ,77
157

17. 19. e 21. e

.11 .5
1:f71

23. /e

Convert the following complex numbers to polar form.

24. 1 - i 25. /Y - i 26. 1 - ii7 27. -VT i

Perform the indicated operations.

.ff i11

28. (2e1'')(3e 1T ) 31.
8e 2

2e
i"
3

r .7

29. (7e
4
)(3e

1g
)

32.
7i

f5e
1.6 1)(2e 1.81

)

9 0

.T1
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LOG TABLE

lo Y__

1.0t .000 4.00 .602 7.00 .845
1.05 .021 4.05 .607 7.05 .848
1.10 .041 4.10 .613 7.10 .851
1.15 .061 4.15 .618 7.15 .854
1.20 .079 4.20 .623 7.20 .857
1.25 .097 4.25 .628 7.25 .860
1.30 .114 4.30 .633 7.30 .863
1.35 .130 4.35 .638 7.35 .866
1.40 .146 4.40 .643 7.40 .869
1.45 .161 4.45 .648 7.45 .872
1.50 .176 4.50 .653 7.50 .875
1.55 .190 4.55 .658 7.55 .878
i.60 .204 4.60 .663 7.60 .881
1.65 .217 4.65 .667 7.65 .884
1.70 .230 4.70 .672 7.70 .886
1.75 .243 4.75 .677 7.75 .889
1.80 .255 4.80 .681 7.80 .892
1.85 .267 4.85 .686 7.85 .895
1.90 .279 4.90 .690 7.90 .898
1.95 .290 4.95 .695 7.95 .900

2.00 .301 5.00 .699 8.00 .903
2.05 .312 5.05 .703 8.05 .906
2.10 .322 5.10 .708 8.10 .908
2.15 . 32 5.15 .712 8.15 .911
2.20 .342 5.20 .716 8.20 .91.1

25 .352 5.25 .720 8.25 .916
2.30 .362 5.30 .724 8.30 .919
2.35 .371 5.35 .728 8.35 .922
2.40 .380 5.40 .732 8.40 .924
2.45 .3 9 5.45 .736 8.45 .927
2.50 .398 5.50 .740 8.50 .929
2.55 .407 5.55 .744 8.55 .932
2.60 .415 5.60- .748 8.60 .934
2.65 .423 5.65 .752 8.65 .937
2.70 ..11 5.70 .756 8.70 .940
2.75 .439 5.75 ,760 8.75 .942
-80 .47 5.80 .763 8.80 .944
2.85 .455 5.85 .767 8.85 .947
2.90 .462 5.90 .771 8.90 .949
2.95 .470 5.95 .775 8.95 .952

3.00 .477 6.00 .778 9.00 .954
3.05 .484 6.05 .782 9.05 .957
3.10 .491 6.10 .785 9.10 .959
3.15 .498 6.15 .789 9.15 .961
3.20 .505 6.20 .792 9.20 .964
3.25 .512 6.25 .796 9.25 .966
3.30 .519 6.30 .799 9.30 .968
3.35 .525 6.35 .803 9.35 .971
3.40 .531 6.40 .856 9.40
3.45 .538 6.45 .810 9.45
3.50 .544 6.50 .813 9.50
3.55 .550 6.55 .816 9.55 .980
3.60 .556 6.60 .820 9.60 .982
3.65 .562 6.65 .823 9.65 .985
3.70 .568 6.70 .826 9.70 .987
3.75 .574 6.75 .829 9.75 .989
3.80 6.80 .833 9.80 .991
3.85 .585 6.85 .836 9.85 .993
3.90 .591 6.90 .839 .996
3.95 .597 6.95 .842 9.95 .998

10.00 1.000

J.i


